
System z

Application Programming Interfaces
SB10-7030-16

���

System z

Application Programming Interfaces
SB10-7030-16

���

Note:
Before using this information and the product it supports, read the information in “Safety” on
page v, Appendix G, “Notices,” on page 235, and IBM Systems Environmental Notices and User
Guide, Z125–5823.

This edition, SB10-7030-16, applies to the IBM System z servers. This edition replaces SB10-7030-15.

There might be a newer version of this document in a PDF file available on Resource Link. Go to
http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. A newer version is indicated by a
lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 01a, 01b).

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Safety v
Safety notices v

World trade safety information v
Laser safety information v

Laser compliance v

About this publication vii
Message event notification vii
Load command support viii
Hardware message refresh command support . . viii
Hardware message event data viii
Activation profile support viii
Hardware message delete command support . . . viii
Reset clear command support viii
Security log event support viii
Processing weight support ix
Activate CBU command support ix
Import/Export profiles support ix
External interrupt command support ix
Reserve command support ix
Alert event support ix
Object name added to event data ix
Degrade indicator enhancements ix
Partition identifier ix
SCSI load/dump support x
Event qualification x
Shutdown/Restart command support x
On/Off Capacity on Demand (On/Off CoD) support x
Integrated Facility for Applications and Integrated
Information Processors weight support x
Processor running time support x
Group profile support x
Additional image activation profile attributes . . . xi
HwmcaGetBulk API xi
SNMP over TCP support xi
Version support xii
Engineering Change (EC)/Microcode Level (MCL)
support xii
Internet Protocol (IP) addresses support xii
z/VM IML/partition activation mode xii
Disabled wait event support. xii
No command response event support xii
Temporary capacity support xii
IPv6 support. xiii
Additional data added to HWMCA_EVENT_DATA
event xiii
Integrated Facility for Applications (IFA) are
Application Assist Processor (AAP) in newer
consoles xiii
Additional image activation profile attributes . . . xiii
IPL Token attribute for CPC Image object xiii
Server Time Protocol (STP) configuration support xiii
Additional temporary capacity support xiv
Additional image activation profile attributes . . . xiv
Group Profile capacity support xiv

Alternate subchannel IPL xiv
Absolute capping xiv
Revisions xiv
Accessibility xiv
How to send your comments xiv

Chapter 1. APIs objectives 1

Chapter 2. Overview 3

Chapter 3. Console application APIs . . 5
Management APIs 5

Data exchange APIs 5
Commands API 21

Command arguments 24
Data exchange APIs and commands API structures
and definitions 42

Constant definitions 43
Data exchange APIs SNMP target structure
(HWMCA_SNMP_TARGET_T) 57
Data exchange APIs initialize structure
(HWMCA_INITIALIZE_T) 58
Data exchange APIs datatype structure
(HWMCA_DATATYPE_T) 59
Function prototypes 59

Data exchange APIs and commands API example . 62

Chapter 4. Console application
managed objects 75
Console application object identifier conventions . . 75

prefix 75
attribute 76
group 76
object 76

Console application object 77
Console application name bindings 77
Console attributes 77
Console application commands 78
Console application notifications 78

Group 79
Group name bindings 79
Group attributes 79
Group commands 80
Group notifications 81

Defined CPC 81
Defined CPC name bindings. 81
Defined CPC attributes 81
Defined CPC relationships 90
Defined CPC commands 90
Defined CPC notifications 91

CPC image 92
CPC image name bindings 92
CPC image attributes 92
CPC image relationships 106

© Copyright IBM Corp. 2000, 2013 iii

||

CPC image commands 106
CPC image notifications 107

Coupling facility 108
Coupling facility name bindings 108
Coupling facility attributes 108
Coupling facility relationships 115
Coupling facility commands 115
Coupling facility notifications 115

Reset activation profile object 116
Reset activation profile name bindings 116
Reset activation profile attributes 117

Image activation profile object 118
Image activation profile name bindings. . . . 118
Image activation profile attributes 118

Load activation profile object 135
Load activation profile name bindings 135
Load activation profile attributes 136

Group profile object 137
Group profile name bindings 137
Group profile attributes 137

Capacity record object 138
Capacity record name bindings 138
Capacity record attributes 138

z/VM virtual machine object 140
Z/VM virtual machine name bindings 140
z/VM virtual machine attributes 140
z/VM virtual machine commands 141
z/VM virtual machine notifications 142

Chapter 5. REXX management
functions 143
ACTZSNMP. 143

REXX initialization functions 143
Data exchange functions. 143
Commands API 156
Data exchange APIs (REXX sample) 167

Chapter 6. Configuring for the data
exchange APIs 191
Configuring for SNMP (for consoles earlier than
version 2.9.0) 191
Configuring the console for API (for consoles
earlier than version 2.9.0) 192

Configuration problems 193
Configuring the console for API (for consoles
version 2.9.0 or later) 193

Appendix A. Building an application 195
Hardware Management Console (prior to version
2.9.0) 195

Appendix B.
HWMCA_EVENT_COMMAND_RESPONSE
return codes. 199

Appendix C. API return codes 203
Data exchange API call return codes. 203
Command API call return codes 206
HWMCA_EVENT_COMMAND_RESPONSE return
codes 208
Data exchange and command API (REXX version)
return codes 212

Appendix D. APIs for Java
(com.ibm.hwmca.api) 213

Appendix E. Object Attribute
Availability 215

Appendix F. XML descriptions 219
Add capacity command 219
Remove capacity command. 219
Capacity record query 220
Engineering Change (EC)/Microcode Level (MCL)
query 222
STP configuration information. 223
XML schema 223

Appendix G. Notices 235
Trademarks 236
Electronic emission notices 236

Glossary 241

iv Application Programming Interfaces

Safety

Safety notices
Safety notices may be printed throughout this guide. DANGER notices warn you of conditions or
procedures that can result in death or severe personal injury. CAUTION notices warn you of conditions
or procedures that can cause personal injury that is neither lethal nor extremely hazardous. Attention
notices warn you of conditions or procedures that can cause damage to machines, equipment, or
programs.

There are no DANGER notices in this guide.

World trade safety information
Several countries require the safety information contained in product publications to be presented in their
translation. If this requirement applies to your country, a safety information booklet is included in the
publications package shipped with the product. The booklet contains the translated safety information
with references to the US English source. Before using a US English publication to install, operate, or
service this IBM® product, you must first become familiar with the related safety information in the
Systems Safety Notices, G229-9054. You should also refer to the booklet any time you do not clearly
understand any safety information in the US English publications.

Laser safety information
All System z® models can use I/O cards such as FICON®, Open Systems Adapter (OSA), InterSystem
Channel-3 (ISC-3), or other I/O features which are fiber optic based and utilize lasers (short wavelength
or long wavelength lasers).

Laser compliance
All lasers are certified in the US to conform to the requirements of DHHS 21 CFR Subchapter J for Class
1 or Class 1M laser products. Outside the US, they are certified to be in compliance with IEC 60825 as a
Class 1 or Class 1M laser product. Consult the label on each part for laser certification numbers and
approval information.

CAUTION: Data processing environments can contain equipment transmitting on system links with
laser modules that operate at greater than Class 1 power levels. For this reason, never look into the
end of an optical fiber cable or open receptacle. (C027)

CAUTION: This product contains a Class 1M laser. Do not view directly with optical instruments.
(C028)

© Copyright IBM Corp. 2000, 2013 v

vi Application Programming Interfaces

About this publication

This document is intended to assist system management independent software vendors, customers, and
system programmers in developing system management applications that provide integrated hardware
and software system management solutions using the Console programming interfaces. A knowledge of
the console and the C and/or Rexx language is recommended.

Note: Throughout this book, the term “Console” refers to the Hardware Management Console or the
Support Element.

The Console is a direct-manipulation object-oriented graphical user interface that provides single point of
control and single-system image for hardware elements. The Console provides the customer grouping
support, aggregated and individual real-time system status by colors, consolidated hardware messages
support, consolidated operating system messages support, consolidated service support, and hardware
commands targeted at a single system, multiple systems, or a customer group of systems. Also, the
Console is exception based through customizable acceptable statuses per object. The objects the Console
currently manages are:
v Central Processing Complexes (CPCs)
v Central Processing Complex Processor Resource/Systems Manager™ (PR/SM™) partitions and/or

native mode images (CPC Images)
v Central Processing Complex Coupling Facilities (Coupling Facility CPC Images)
v Customer defined groups of Central Processing Complexes, PR/SM partitions, native mode images,

and/or Coupling Facilities.

In addition to providing an end user with the ability to view and manipulate managed objects, the
Console also provides management application programming interfaces (APIs). The management APIs
provide the ability to get/set the attributes of a Console managed object, issue commands to be
performed on a managed object from a local or remote application, receive asynchronous notifications,
and generate Simple Network Management Protocol enterprise-specific traps.

In the following pages, the Console programming interfaces are detailed. The four areas to be covered
are:
v Console APIs objectives
v Overview of the Console APIs architecture
v Console APIs definition, data structures, and usage
v Console managed object definitions and identifications.

Figures included in this document illustrate concepts and are not necessarily accurate in content,
appearance, or specific behavior.

Message event notification
“HwmcaWaitEvent” on page 13 describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for:
v Registering for only hardware or operating system message event notifications,
v Registering for only nonrefresh message event notifications

These capabilities are available in Consoles for:
v 9674 Coupling Facility EC D98085 or later, and

© Copyright IBM Corp. 2000, 2013 vii

v 9672 Parallel Enterprise Server EC E12867 or later.

Load command support
“Commands API” on page 21 describes how to use the Commands API to perform a Load. The
HWMCA_LOAD_COMMAND is available in Hardware Management Consoles with EC level E45976 or
later and available on all standalone Support Elements that support APIs.

Hardware message refresh command support
“Commands API” on page 21 describes how to use the Commands API to request refresh events for
existing hardware messages to be sent to registered applications. This command is available on all
Consoles version 1.4.0 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

Hardware message event data
“HwmcaWaitEvent” on page 13 describes the data provided in a hardware
HWMCA_EVENT_MESSAGES event. While this event is available from all levels of Consoles, only
Consoles version 1.4.0 or later include the following data in these types of events. (To locate the version
level installed on your console, look at the title bar on the workplace window.)
v Time stamp of the hardware message,
v List of CPC Images associated with the hardware object generating the hardware message.

Activation profile support
“Reset activation profile object” on page 116 “Image activation profile object” on page 118, and “Load
activation profile object” on page 135 describe the Reset Activation Profile, Image Activation Profile, and Load
Activation Profile managed objects. The support for these managed objects is available only on Consoles
version 1.4.4 or later. (To locate the version level installed on your console, look at the title bar on the
workplace window.)

Hardware message delete command support
“Commands API” on page 21 describes how to use the Commands API to request the deletion of existing
hardware messages. This command is available on all Consoles version 1.5.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Reset clear command support
“Commands API” on page 21 describes how to use the Commands API to perform a Reset clear of a CPC
Image object. This command is available on all Consoles version 1.5.0 or later. To locate the version level
installed on your console, look at the title bar on the workplace window.)

Security log event support
“HWMCA_EVENT_SECURITY_EVENT” on page 18 describes the data provided in a
HWMCA_EVENT_SECURITY_EVENT event. This event is issued only from Hardware Management
Consoles at Version 1.8.2 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

viii Application Programming Interfaces

Processing weight support
Support for the processing weight value and processing weight capped attributes was added to the CPC
Image, Coupling Facility and Image Activation Profile objects on all Consoles version 1.5.1 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

Activate CBU command support
“Commands API” on page 21 describes how to use the Command API to perform a real or test Capacity
Backup Upgrade (CBU) activation. This command is available on all Consoles version 1.6.2 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.) For
additional information about the Activate CBU command, see Capacity on Demand User’s Guide (available
only on the Resource Link® web site).

Import/Export profiles support
“Commands API” on page 21 describes how to use the Commands API to import or export profiles. This
command is available on all Consoles version 1.6.2 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

External interrupt command support
“Commands API” on page 21 describes how to use the Commands API to perform an external interrupt
for a CPC Image object. This command is available on all Consoles Version 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Reserve command support
“Commands API” on page 21 describes how to use the Commands API to reserve exclusive control of a
CPC object. This command is available only on Support Element Consoles at 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Alert event support
Support for issuing the HWMCA_EVENT_ALERT has been removed. The Support Element Console no
longer issues this event.

Object name added to event data
“HwmcaWaitEvent” on page 13 describes the data provided in the various events generated by the
Console. While these events have been available for quite some time, additional information is now
provided in all events except for the HWMCA_EVENT_NAME_CHANGE event from Consoles version
1.7.3 or later. This new event data consists of the name of the object the event pertains to.

Degrade indicator enhancements
The Degrade Indicator attribute of the Defined CPC object has been enhanced to have some additional
values, which are used to identify additional degraded conditions. These additional values could be
returned for this attribute from Consoles version 1.8.0 or later.

Partition identifier
Support for the partition identifier attributes was added to the CPC Image and Coupling Facility objects
on all Support Element Consoles version 1.8.0 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

About this publication ix

SCSI load/dump support
“Commands API” on page 21 describes how to use the Commands API to perform a SCSI (Small
Computer System Interface) Load and SCSI Dump for a CPC Image object. This command is available on
all Consoles Version 1.8.0 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

Event qualification
“HwmcaWaitEvent” on page 13 describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for providing additional qualification information when registering
to receive events. These capabilities are available in Consoles Version 1.8.0 or later. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

Shutdown/Restart command support
“Commands API” on page 21 describes how to use the Commands API to shutdown/restart the Console.
This command is available only on Consoles at Version 2.9.0 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

On/Off Capacity on Demand (On/Off CoD) support
Consoles at Version 2.9.1 or later provide the ability to activate, undo, or query information about a
On/Off CoD record for a Defined CPC. (To locate the version level installed on your console, look at the
title bar on the workplace window.) “Commands API” on page 21 describes how to use the Commands
API to perform an Activation or Undo of an On/Off CoD record for a Defined CPC, while “Defined
CPC” on page 81 describes the On/Off CoD related attributes for the Defined CPC object.

Important planning information for On/Off CoD API activation can be found in Capacity on Demand
User’s Guide (available only on the Resource Link web site).

Integrated Facility for Applications and Integrated Information
Processors weight support
Support for the processing weight value and processing weight capped attributes for Integrated Facility
for Applications (IFA) processors was added to the CPC Image and Image Activation Profile objects on all
Consoles version 2.9.0 or later. Support for the processing weight value and processing weight capped
attributes for IBM System z9® Integrated Information Processors (zIIP) was added to the CPC Image and
Image Activation Profile objects on all Consoles version 2.9.1 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

Processor running time support
Support for the processor running attributes was added to the Defined CPC and Reset Activation Profile
objects on all Consoles version 2.9.1 or later. (To locate the version level installed on your console, look at
the title bar on the workplace window.)

Group profile support
Group Profile Object, in Chapter 4, “Console application managed objects,” on page 75, describes the new
support for the Group Profile managed object. An additional attribute used to determine the list of Group
Profile objects has also been added to the Defined CPC object as well. This support is available only on
Consoles version 2.9.2 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

x Application Programming Interfaces

Additional image activation profile attributes
Support for the following attributes was added to the Image Activation Profile objects on all Consoles
version 2.9.2 or later:
v Load at activation
v Central storage
v Reserved central storage
v Expanded storage
v Reserved expanded storage
v Number of dedicated general-purpose processors
v Number of reserved dedicated general-purpose processors
v Number of dedicated Integrated Facility for Applications (IFA) processors
v Number of reserved dedicated Integrated Facility for Applications (IFA) processors
v Number of dedicated Integrated Facility for Linux (IFL) processors
v Number of reserved dedicated Integrated Facility for Linux (IFL) processors
v Number of dedicated Internal Coupling Facility (ICF) processors
v Number of reserved dedicated Internal Coupling Facility (ICF) processors
v Number of dedicated Integrated Information Processors (zIIP) processors
v Number of reserved dedicated Integrated Information Processors (zIIP) processors
v Number of shared general-purpose processors
v Number of reserved shared general-purpose processors
v Number of shared Integrated Facility for Applications (IFA) processors
v Number of reserved shared Integrated Facility for Applications (IFA) processors
v Number of shared Integrated Facility for Linux (IFL) processors
v Number of reserved shared Integrated Facility for Linux (IFL) processors
v Number of shared Internal Coupling Facility (ICF) processors
v Number of reserved shared Internal Coupling Facility (ICF) processors
v Number of shared Integrated Information Processors (zIIP) processors
v Number of reserved shared Integrated Information Processors (zIIP) processors

HwmcaGetBulk API
“HwmcaGetBulk” on page 11 describes the new HwmcaGetBulk application programming interface. This
new API allows the application program to use the SNMP GetBulk request, which provides a mechanism
for getting multiple attributes with a single request. While this API is being introduced with version 2.9.2,
most earlier versions of Consoles already support this new request. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

SNMP over TCP support
Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs will automatically
attempt to use the TCP protocol first and then fall back to UDP if it is unavailable. Support for using TCP
for SNMP is also being made available for earlier Console versions as well. Contact your IBM support
representative for details on what microcode levels are needed for this support. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

About this publication xi

Version support
Support for a new version attribute has been added to the Defined CPC and Console Application objects
on all Consoles version 2.10.0 or later. (To locate the version level installed on your console, look at the
title bar on the workplace window.)

Engineering Change (EC)/Microcode Level (MCL) support
Support for a new attribute that describes the Engineering Change and Microcode levels has been added
to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Internet Protocol (IP) addresses support
Support for a new attribute that describes all of the internal protocol (IP) addresses being used has been
added to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

z/VM IML/partition activation mode
The IML/Partition Activation mode attribute for CPC Image object supports a new value for when a CPC
Image is activated is this newly supported mode. This support is available only on all Consoles version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Disabled wait event support
“HWMCA_EVENT_DISABLED_WAIT” on page 19 describes the data provided in the newly supported
HWMCA_EVENT_DISABLED_WAIT event. This event is issued only on Consoles at Version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

No command response event support
“HwmcaWaitEvent” on page 13 describes the capabilities available for the receipt of asynchronous event
notifications. While command response event notifications are provided by all levels of Consoles, not all
Consoles provide support for the new event mask, HWMCA_EVENT_NO_COMMAND_RESPONSE,
which is used to indicate the registering application does not want to receive
HWMCA_EVENT_COMMAND_RESPONSE events. This new capability is available in Consoles Version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Temporary capacity support
New support in the form of a new object, new attributes, and new events has been added for temporary
capacity support for Defined CPC objects. This support is available only on Consoles version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Capacity Record Object, in Chapter 4, “Console application managed objects,” on page 75 describes the
new Capacity Record object and the object's associated attributes. Two new commands,
HWMCA_ADD_CAPACITY_COMMAND and HWMCA_REMOVE_CAPACITY_COMMAND are also
provided to allow for the addition and removal of temporary capacity for Defined CPC objects. Lastly,
two new events are defined, HWMCA_EVENT_CAPACITY_CHANGE and

xii Application Programming Interfaces

HWMCA_EVENT_CAPACITY_RECORD_CHANGE, to allow for registered applications to be notified
about temporary capacity changes for Defined CPC objects, as well as changes in Capacity Record
objects.

IPv6 support
Consoles version 2.10.0 or later fully support Internet Protocol Version 6 (IPv6). To take advantage of this
new support, new versions of the build and run-time files are available for platforms that also support
IPv6.

Additional data added to HWMCA_EVENT_DATA event
“HWMCA_EVENT_ENDED” on page 17 describes the data provided in this event. Additional
information is now provided in this event on Console version 2.10.0 or later. This new event data consists
of:
v the reason the console was ended,
v the name of the Console application component that caused the Console to end, and
v the type of shutdown that caused the Console to end.

Integrated Facility for Applications (IFA) are Application Assist
Processor (AAP) in newer consoles
On Consoles version 2.10.0 or later, Integrated Facility for Applications (IFA) processors are called
Application Assist Processor (AAP) processors.

Additional image activation profile attributes
Support for the following CPU counter and CPU sampling related attributes were added to the Image
Activation Profile objects on all Consoles version 2.10.1 or later:
v Basic CPU counter authorization control
v Problem state CPU counter authorization control
v Crypto activity CPU counter authorization control
v Extended CPU counter authorization control
v Coprocessor group CPU counter authorization control
v Basic CPU sampling authorization control

IPL Token attribute for CPC Image object
Support for the IPL token attribute was added to the CPC Image object on all Consoles version 2.10.1 or
later.

Server Time Protocol (STP) configuration support
Support for a new attribute that describes the STP configuration has been added to the Defined CPC
object on all Consoles version 2.10.1 or later. Also, the following STP commands were added to the
Defined CPC object:
v Swap Current Time Server
v Set STP Configuration
v Change STP-only CTN
v Join STP-only CTN
v Leave STP-only CTN

About this publication xiii

Additional temporary capacity support
Prior to version 2.10.1, only the total number of processors pending activation could be queried via the
Data Exchange APIs. Starting in version 2.10.1, support has been added to be able to query the number of
processors pending activation by type as well.

Additional image activation profile attributes
Support for the following crypto related attributes were added to the Image Activation Profile objects on
all Consoles version 2.10.2 or later:
v Permit DEA key import functions
v Permit AES key import functions

Group Profile capacity support
Support for a new attribute that provides the current capacity value for a group profile has been added
to the Image object on all Consoles version 2.11.0 or later.

Alternate subchannel IPL
Specifying an alternate subchannel IPL address to the Load command is supported on consoles version
2.11.1 or later.

Absolute capping
Absolute capping is supported on consoles version 2.12.1 or later.

Revisions
A technical change to the text is indicated by a vertical line to the left of the change.

Accessibility
This publication is in Adobe Portable Document Format (PDF) and should be compliant with accessibility
standards. If you experience difficulties using this PDF file you can request a web-based format of this
publication. Go to Resource Link at http://www.ibm.com/servers/resourcelink and click Feedback from
the navigation bar on the left. In the Comments input area, state your request, the publication title and
number, choose General comment as the category and click Submit. You can also send an email to
reslink@us.ibm.com providing the same information.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality information. Send
your comments by using Resource Link at http://www.ibm.com/servers/resourcelink. Click Feedback
on the navigation bar on the left. You can also send an email to reslink@us.ibm.com. Be sure to include
the name of the book, the form number of the book, the version of the book, if applicable, and the
specific location of the text you are commenting on (for example, a page number, table number, or a
heading).

xiv Application Programming Interfaces

|

|

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Chapter 1. APIs objectives

The purpose of the Console application programming interfaces is to provide an open set of interfaces
and a workstation platform for system management application providers. The interfaces provide the
capability to use object-based industry-standard programming interfaces instead of building home-grown
release specific programs for collecting the hardware information needed to provide an integrated
hardware and software system management solution. Figure 1 illustrates the integration of system
management applications using the Console application open programming interfaces to provide a
single-system image (SSI) and a single point of control (SPOC).

Figure 1. Console APIs Objectives

© Copyright IBM Corp. 2000, 2013 1

2 Application Programming Interfaces

Chapter 2. Overview

This chapter contains a high-level diagram that illustrates how the Console application accomplishes the
purpose of the application programming interfaces, shown in Figure 1 on page 1.

Figure 2 shows a high-level architecture and flow of information for the Console application management
programming interfaces. The Console application APIs are implemented using the Simple Network
Management Protocol (SNMP) agent. The objects managed by the Console application described in
Chapter 4, “Console application managed objects,” on page 75 are stored in the Simple Network
Management Protocol management information base (MIB). For more information about using the
management application programming interfaces, see “Management APIs” on page 5.

Figure 2. Console Application Data Exchange and Commands APIs

© Copyright IBM Corp. 2000, 2013 3

4 Application Programming Interfaces

Chapter 3. Console application APIs

Management APIs

Data exchange APIs
The purpose of the Data Exchange APIs is to allow other applications, local or remote, the ability to
exchange data related to the objects that the Console application manages. Specifically, this support
allows other applications to request the Console application to:
v Query (Get/Get-Next) the attributes of objects,
v Change (Set) certain attributes of objects,
v Receive notification of significant events occurring to objects, and
v Generate enterprise-specific Simple Network Management Protocol traps for significant events

occurring to objects.

The Data Exchange APIs use the Simple Network Management Protocol (SNMP) as the transport
mechanism. The attributes of objects can be queried/changed through the underlying SNMP Set, Get,
Get-Next requests, while event notification is accomplished through the use of the enterprise-specific
SNMP Trap message.

Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs automatically attempt
to use the TCP protocol first and then fall back to UDP if it is unavailable.

The underlying SNMP protocol is encapsulated in several APIs in order to reduce the complexities for the
application programmer. Specifically, the set of Data Exchange APIs consists of:

Hwmcalnitialize
Used to perform some initialization tasks necessary for the remainder of the Data Exchange APIs
set and the Commands API.

HwmcaGet
Used to perform a query or Get request for a specified object or object attribute.

HwmcaGetNext
Used to perform a query-next or Get-next request for an object or object attributes that occurs
next in the lexical sequence of objects managed by the Console application.

HwmcaGetBulk
Used to minimize the number of requests required to retrieve large amounts of object or object
attribute data in a manner similar to what could be obtained with a series of HwmcaGetNext
calls.

HwmcaSet
Used to perform a change or Set request for a specified object or object attribute.

HwmcaWaitEvent
Used to wait for a specified period (or forever) for an event notification from the Console
application.

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs in the set.

© Copyright IBM Corp. 2000, 2013 5

HwmcaBuildId
A convenience routine that can be used to construct an object identifier for any object supported
by the Console application.

HwmcaBuildAttributeId
A convenience routine that can be used to construct an attribute object identifier for any object
supported by the Console applications, based on the object identifier of the object itself.

Note: It is possible that some of these APIs might encounter problems if the Console that they are
targeting has been configured to use the Lockup/Screen saver mode capability. It is recommended that
Consoles used as targets for these APIs not have this feature of OS/2 enabled.

The following pages describe each of these APIs in greater detail.

Hwmcalnitialize
Use this API to perform any initialization tasks required in order for the remainder of the API set to
function correctly. (Refer to “Function prototypes” on page 59 for the C function prototype for this API.)
The arguments specified for this API are:

pInitialize
A pointer to an HWMCA_INITIALIZE_T structure. This structure defines all the information that
is required for the Console application to perform the initialization request. The fields of the
HWMCA_INITIALIZE_T structure meaningful are:

pTarget
A pointer to data specifying the target Console application for the initialization request.

This is a pointer to an HWMCA_SNMP_TARGET_T structure. The fields of this
structure are:

pHost A pointer to a null terminated string specifying the host name or internet address
for the target Console application.

szCommunity
A null terminated string specifying the community name that is to be used for
the SNMP request made to the target Console application. (Refer to Chapter 6,
“Configuring for the data exchange APIs,” on page 191 for more information
regarding the community name used in SNMP requests.)

ulSecurityVersion
Used to specify the desired authentication method. Use the value
HWMCA_SECURITY_VERSION2 for community name based SNMPv2c
authentication. Use the value HWMCA_SECURITY_VERSION3 for username
and password based SNMPv3 authentication.

szUsername
Username to be used for SNMPv3 authentication.

szPassword
Password to be used for SNMPv3 authentication.

ulEventMask
Used to specify the types of event notifications that the application program would like
to be registered for. Any combination of the HWMCA_EVENT_* constants logically
ORed together can be specified. This event mask is used for all events emitted by
Console applications managed objects, such as:
v HWMCA_EVENT_COMMAND_RESPONSE
v HWMCA_EVENT_MESSAGE
v HWMCA_EVENT_STATUS_CHANGE
v HWMCA_EVENT_NAME_CHANGE
v HWMCA_EVENT_ACTIVATE_PROF_CHANGE

6 Application Programming Interfaces

|
|
|
|
|

|
|

|
|

v HWMCA_EVENT_CREATED
v HWMCA_EVENT_DESTROYED
v HWMCA_EVENT_EXCEPTION_STATE
v HWMCA_EVENT_ENDED
v HWMCA_EVENT_HARDWARE_MESSAGE
v HWMCA_EVENT_OPSYS_MESSAGE
v HWMCA_EVENT_NO_REFRESH_MESSAGE
v HWMCA_EVENT_STARTED
v HWMCA_EVENT_HARDWARE_MESSAGE_ DELETE
v HWMCA_EVENT_SECURITY_EVENT
v HWMCA_EVENT_CAPACITY_CHANGE
v HWMCA_EVENT_CAPACITY_RECORD_ CHANGE
v HWMCA_EVENT_DISABLED_WAIT

These event notifications are sent to all registered applications, independent of whether
an application originated the request.

In addition to specifying the types of events that the application program wants to be
registered for, this field can also be used to specify some additional options for the Data
Exchange APIs. These additional options are:
v HWMCA_DIRECT_INITIALIZE

By default, the Data Exchange APIs and the Commands API use SNMP when
performing the HwmcaInitialize. This flag can be specified to instruct the
HwmcaInitialize call to use a proprietary TCP/IP sockets level protocol to perform the
HwmcaInitialize, rather than using the SNMP protocol. When this flag is specified it is
possible for the HwmcaInitialize to be successful when using a community name that
has read only address. When this flag is not used it is required that the community
name used for the HwmcaInitialize call has read/write access.

Note: Specifying this flag is highly recommended when a firewall exists between the
Console and the API application. This is because the socket used for the
HwmcaInitialize call is also used to send event to the API application. Since this socket
connection targets a specific port on the Console (port 3161), it is very straight forward
to define a rule in the firewall that allows connections to this port on the Console. If
this flag is not specified, the Console attempts to establish a socket connection to a
socket created when the API application called the HwmcaInitialize routine. Since the
port number for this socket is not fixed, it is very difficult to define a firewall rule to
allow this connection from the Console back to the API application.

v HWMCA_FORCE_CLIENT_PATH
When using the Data Exchange APIs to target a Console with multiple LAN interfaces
(for example, a token ring and ethernet interface), this flag can be used to instruct the
Console to ensure that all Data Exchange APIs and the Commands API use the
targeted internet address when sending and receiving data.

v HWMCA_SNMP_VERSION_2
By default, the Data Exchange APIs and the Commands API use SNMP version 1. By
specifying this flag, the Data Exchange APIs are instructed to used SNMP version 2 as
the underlying protocol. The major reason a Data Exchange APIs application would
specify this, is so that it can receive more detailed error return codes that are provided
by SNMP version 2.

v HWMCA_TOLERATE_LOST_EVENTS
By default, the HwmcaWaitEvent call terminates the connection to the target console if
the API application is unable to process events as fast or faster than the target console
is able to send them. By specifying this event mask flag, the connection will not be
terminated in this case. Instead, events will not be sent to the API application while it
is unable to receive them.

Chapter 3. Console application APIs 7

v HWMCA_QUALIFIER_SPECIFIED
By default event notifications from all Console application managed objects that match
the event masks specified in this field will be sent to the API application. By specifying
this event mask flag, additional qualification information can be provided to further
limit the event notifications that will be sent to the API application. When this event
mask flag is specified, the calling API application should also provide additional
qualification information in the ulReserved field. Refer to the description of the
ulReserved field for details on how this additional qualification information is specified.

v HWMCA_EVENT_NO_COMMAND_RESPONSE
By default, all HWMCA_EVENT_COMMAND_RESPONSE events are sent to each
registered application. This event mask flag can be used to indicate that the registering
application does not want to receive these events.

Note: Care should be used when trying to use the same HWMCA_INITIALIZE_T
structure for HwmcaWaitEvent calls in addition to the rest of the APIs in the set. Events
associated with a HWMCA_INITIALIZE_T structure will be queued until retrieved with
the HwmcaWaitEvent or until another API, such as HwmcaGet, is called. Therefore,
making calls, such as HwmcaGet, will cause any queued events to be discarded and lost.

When both HwmcaWaitEvent and other calls need to be made, an application should
perform two HwmcaInitialize calls using two distinct HWMCA_INITIALIZE_T
structures. The application can then use one of the HWMCA_INITIALIZE_T structures
for only HwmcaWaitEvent calls and the other HWMCA_INITIALIZE_T structure for the
other API calls.

ulReserved
This is a reserved field and must be set to zero for the Data Exchange APIs if the
HWMCA_QUALIFIER_SPECIFIED event mask flag is not specified. If the
HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of
a linked list of additional event qualification information. The fields of the
HWMCA_EVENT_QUALIFIER_T structures in the list are:

ulEventMask
This field should be set to the event mask flag that is being qualified. Only one
event mask flag should be specified in this field. For example,
HWMCA_EVENT_OPSYS_MESSAGE should be specified when qualifying
operating system message event notifications.

ulType
This field is used to indicate the type of event qualification information being
provided. The following event qualification types are currently supported.

HWMCA_QUALIFIER_TYPE_NAME
This value is used to indicate that the event qualification data is the null
terminated name of the managed object, which is specified in the
type.szName field of this structure. An HWMCA_EVENT_QUALIFIER_T
structure that specifies this event qualification type can be used to limit
event notifications for the specified event mask to those associated with a
managed object with the specified name.

pNext A pointer to the next HWMCA_EVENT_QUALIFIER_T structure. A NULL is
used to indicate that there are no more structures in the linked list.

Once the HWMCA_INITIALIZE_T is used on a successful HwmcaInitialize, this field
should not be altered in any way.

8 Application Programming Interfaces

The remainder of the HWMCA_INITIALIZE_T structure should be left alone and will be filled in
by the HwmcaInitialize API. It is important that this structure be left intact and accessible, since it
must be passed as a parameter on each of the remaining Data Exchange APIs and Commands
API.

In addition to using the HWMCA_INITIALIZE_T for any subsequent Data Exchange APIs, it can
also be reused on another HwmcaInitialize call. The only field that can be changed when doing
this is the ulEventMask field. By changing this value, an application can change the events
notifications that it is registered to receive.

Refer to “Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)” on page 58 for the C
declaration of this structure.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaInitialize to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaInitialize API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the initialization request was successfully delivered
and processed by the Hardware Management Console Application. A value of
HWMCA_DE_NO_ERROR indicates successful completion.

Note: Upon successful completion of the HwmcaInitialize call, the ulEventMask field of the
HWMCA_INITIALIZE_T can be checked for the HWMCA_SNMP_USING_TCP flag to determine if the
initialized session is using UDP or TCP for the flow of SNMP data.

HwmcaRegister
Use this API to alter the event mask and/or event qualifiers used on a previous HwmcaInitialize call.
(Refer to “Function prototypes” on page 59 for the C function prototype for this API.) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

ulEventMask
Used to specify the new types of event notifications that the application program would like to
be registered for. Any combination of the HWMCA_EVENT_* constants logically ORed together
can be specified.

pQualifiers
If the HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of a linked
list of additional event qualification information.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaRegister to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaRegister API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the register request was successfully delivered and
processed by the Hardware Management Console Application. A value of HWMCA_DE_NO_ERROR
indicates successful completion.

Note: The event mask and event qualifiers specified on the HwmcaRegister call will completely replace
those in effect from the previous HwmcaRegister call.

Chapter 3. Console application APIs 9

HwmcaGet
Used to retrieve or Get the data associated with a specific object attribute. (Refer to “Function prototypes”
on page 59 for the C function prototype for this API.) The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pszObjectID
A pointer to a null terminated object identifier string for which the data is to be retrieved. Refer
to Chapter 4, “Console application managed objects,” on page 75 for more information about the
object identifiers that the Console application manages.

pOutput
A pointer to an output buffer for the data of the returned object.

uILength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this Get
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to Get all the object data. If the
buffer specified by pOutput is too small, then the retrieved object data should not be used, since it
is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the HwmcaGet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaGet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the retrieve/Get request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Upon successful completion of the HwmcaGet API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

10 Application Programming Interfaces

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE_T structure represents the length of each individual data
element in the series.

HwmcaGetNext
Used to retrieve or Get the data associated with the object attribute that occurs next in the lexical
sequence of objects, based on a specified object identifier. (Refer to “Function prototypes” on page 59 for
the C function prototype for this API.)

The arguments specified for this API are identical to those specified for the HwmcaGet API with two
subtle differences.
1. The meaning of the pszObjectID argument is used as the base for the Get-Next operation, as opposed

to having its object data retrieved.
2. Two HWMCA_DATATYPE_T structures and their associated data are returned. The first is the object

identifier string for the object whose data is being returned and the second is for the data itself.

HwmcaGetBulk
Used to retrieve or Get data associated with a series of object attributes with a single request. (Refer to
“Function prototypes” on page 59 for the C function prototype for this API.) This call can be viewed as
performing a series of HwmcaGetNext calls with a single request. For additional details about the
underlying SNMP GetBulkRequest used by this function refer to Request for Comments (RFC) 3416.

The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pszObjectIDs
A pointer to a linked list of HWMCA_DATATYPE_T structures used to specify the object
identifiers to use for the GetBulk request. Refer to Chapter 4, “Console application managed
objects,” on page 75 for more information about the object identifiers that the Console application
manages.

nonRepeaters
The number of object identifiers specified in the pszObjectIds argument that are to produce only
one HWMCA_DATATYPE_T structure in the output buffer.

maxRepititions
The maximum number of HWMCA_DATATYPE_T fields to be placed in the output buffer for the
remaining object identifiers specified in the pszObjectIDs argument.

pOutput
A pointer to an output buffer for the data of the returned object.

uILength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this GetBulk
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to get the complete set of object
data. If the buffer specified by pOutput is too small, then the retrieved object data should not be
used, since it is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaGetBulk to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

Chapter 3. Console application APIs 11

The HwmcaGetBulk API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the request was successfully delivered and processed
by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful completion. Upon
successful completion of the HwmcaGetBulk API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData
A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext
A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while
the ulLength field of each HWMCA_DATATYPE_T structure represents the length of each individual data
element in the series.

HwmcaSet
Used to change or Set the data associated with a specific object attribute. (Refer to “Function prototypes”
on page 59 for the C function prototype for this API.) The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pszObjectID
A pointer to a null terminated object identifier string for which the data is to be changed or Set.
Refer to Chapter 4, “Console application managed objects,” on page 75 for more information
about the object identifiers that the Console application manages.

pDataType
A pointer to an HWMCA_DATATYPE_T structure that specifies the data to be used for the Set
request. The fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible
values are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

Note: The Data Exchange APIs currently only support lengths of 2 bytes or 4
bytes for the HWMCA_TYPE_INTEGER data type when using the HwmcaSet.

12 Application Programming Interfaces

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T
structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext This should be set to NULL for the HwmcaSet API and is ignored.

Refer to Chapter 4, “Console application managed objects,” on page 75 for a description of the
data types, data lengths, and valid data values of the data associated with each type of object
managed by the Console application.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the HwmcaSet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaSet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the change/Set request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

HwmcaWaitEvent
Used to wait for event notifications for objects managed by the Console application. The application
specifies the types of events that it wants to receive through the use of the ulEventMask field of the
HWMCA_INITIALIZE_T structure that is used on the HwmcaInitialize API. (Refer to “Function
prototypes” on page 59 for the C function prototype for this API.) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pOutput
A pointer to an output buffer for the returned event notification data.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this event
notification is returned. If the returned value is greater than that specified in the ulLength
argument, then the event notification data should not be used, since it is incomplete.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for an event
notification. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

The HwmcaWaitEvent API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if any errors occurred while waiting for the event
notification. A value of HWMCA_DE_NO_ERROR indicates successful completion. A value of
HWMCA_DE_TIMEOUT indicates that no event notifications were present in the specified timeout
period.

Upon successful completion of the HwmcaWaitEvent API, the output buffer specified by pOutput is
populated with a series of one or more HWMCA_DATATYPE_T structures along with their associated
data. The fields of the HWMCA_DATATYPE_T structure are:

Chapter 3. Console application APIs 13

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_OBJECTID
Represents a null terminated object identifier string.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE_T structure represents the length of each individual data
element in the series.

The series of HWMCA_DATATYPE_T structures returned from the HwmcaWaitEvent API are used to
specify:
v An HWMCA_TYPE_OBJECTID that specifies the object identifier of the object that the event

notification pertains to
v An HWMCA_TYPE_INTEGER that specifies the event notification type for this event
v Any additional data for the event notification type, as specified below.

The additional data for each of the event notification types are:

HWMCA_EVENT_COMMAND_RESPONSE: Used to notify the application of completion information
for a command that has been initiated through the use of the Commands API.

The additional data for this event consists of three object identifier/value pairs that describe the
following:
1. An HWMCA_TYPE_OBJECTID that specifies the object identifier of the command for which this

command response event has been generated.
2. An HWMCA_TYPE_INTEGER that specifies the return code value to be used to determine the

success or failure of the command request that is associated with this command response event.

Note: Refer to Appendix B, “HWMCA_EVENT_COMMAND_RESPONSE return codes,” on page 199
for a list of possible values that can be returned.

3. An HWMCA_TYPE_INTEGER that specifies whether this is the last
HWMCA_EVENT_COMMAND_RESPONSE event that will be issued for this command. A value of
HWMCA_TRUE indicates this event as the last, while a value of HWMCA_FALSE indicates that more
HWMCA_EVENT_COMMAND_RESPONSE events will be forthcoming.

4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.
5. An HWMCA_TYPE_OCTETSTRING that specifies the command correlator.

Note: This field will only be present if the command was invoked using the
HwmcaCorrelatedCommand API call.

14 Application Programming Interfaces

HWMCA_EVENT_MESSAGE: Used to notify the application that an object managed by the Console
application or the Console application itself has a new or refreshed message. This event is generated only
for the base objects and not for copies of objects within user-defined groups.

This event is returned to the application when any combination of the following values is used in the
ulEventMask field of the HWMCA_INITIALIZE_T structure:
v HWMCA_EVENT_MESSAGE
v HWMCA_EVENT_HARDWARE_MESSAGE
v HWMCA_EVENT_OPSYS_MESSAGE

If the HWMCA_EVENT_MESSAGE value is specified in the ulEventMask field of the
HWMCA_INITIALIZE_T structure, then the application will be notified of both hardware and operating
system message events.

If only the HWMCA_EVENT_HARDWARE_MESSAGE or HWMCA_EVENT_OPSYS_MESSAGE value
is specified in the ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will
be notified only of hardware or operating system message events, respectively.

In addition, the HWMCA_EVENT_NO_REFRESH_MESSAGE value can be specified with the above
values to control whether the application should be notified of HWMCA_EVENT_MESSAGE events for
refreshed messages. If the HWMCA_EVENT_NO_REFRESH_MESSAGE value is specified in the
ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will not be notified of
HWMCA_EVENT_MESSAGE events for refreshed messages.

The additional data for this event can take on two different formats. The format being received can be
determined through examining the first object identifier/value pair. The object identifier/value pairs for
each of the two formats follows:

An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).
1. The remaining object identifier/value pair for hardware messages is:

a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed hardware message text.
b. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or

refresh message (HWMCA_TRUE).
c. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refreshed

hardware message.
d. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s)

associated with the object that generated the new or refreshed hardware message. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image
name(s).
When receiving this event from a Support Element Console, this value contains the name(s) of the
CPC Images that are running on the CPC that the Support Element Console is controlling.
When receiving this event from a Hardware Management Console, this value:
v Contains no CPC Image names for hardware messages for the Hardware Management Console

itself
v Contains no CPC Image names for Optical Network related hardware messages
v Contains the name(s) of the CPC Images that are running on the CPC that the hardware

message pertains to.
e. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains

to.
2. The remaining object identifier/value pairs for operating system messages are:

a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message
text.

Chapter 3. Console application APIs 15

Note: If the operating system message text contains multiple lines, then each additional line is
delimited from the next line with the character sequence of a carriage return (\r) and a new line
(\n).

b. An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating
system message.

c. An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no date value for this new operating system
message.

d. An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no time value for this new operating system
message.

e. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should
cause the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).

f. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a
priority message or not (HWMCA_TRUE or HWMCA_FALSE).

g. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held
message or not (HWMCA_TRUE or HWMCA_FALSE).

h. An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with
the new operating system message or an HWMCA_TYPE_NULL indicating that there is no
prompt text for this new operating system message.

i. An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated
this new operating system message or an HWMCA_TYPE_NULL indicating that there is no
operating system name associated with this new operating system message.

j. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

k. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains
to.

HWMCA_EVENT_STATUS_CHANGE: Used to notify the application that an object managed by the
Console application has changed status. This event is generated only for the base objects and not for
copies of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_INTEGER that specifies the new status value
2. An HWMCA_TYPE_INTEGER that specifies the old status value.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_NAME_CHANGE: Used to notify the application that an object managed by the
Console application has had a name change. This event notification can be useful when an application
retains the object identifiers for objects it is interested in, since the name of an object is used to build the
unique portion of the object identifier. This event is generated only for the base objects and not for copies
of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new object name
2. An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

HWMCA_EVENT_ACTIVATE_PROF_CHANGE: Used to notify the application that an object managed
by the Console application has changed which activation profile is associated with it.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name

16 Application Programming Interfaces

2. An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_CREATED: Used to notify the application that a new object managed by the Console
application has been defined or instantiated.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_DESTROYED: Used to notify the application that an object managed by the Console
application has been undefined.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_EXCEPTION_STATE: Used to notify the application that an object managed by the
Console application has either entered into or out of an exception state. An object is considered in an
exception state when its status is not considered acceptable as defined by the acceptable status attribute
of the object. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state

(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).
2. An HWMCA_TYPE_INTEGER that specifies the status value for the object.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_STARTED: Used to notify the application that the Console application has started
and is now ready to handle Data Exchange APIs and Commands API request.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_ENDED: Used to notify the application that the Console application is ending.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies the reason for the event. The possible values are:

v HWMCA_ENDED_USER - the event was initiated by a user,
v HWMCA_ENDED_AUTOMATION - the event was initiated by automation, or
v HWMCA_ENDED_OTHER - the event was initiated by the Console application itself (for example,

recovery action, change management, etc.)
2. An HWMCA_TYPE_OCTETSTRING that specifies the name of the Console application component

that caused the event.
3. An HWMCA_TYPE_INTEGER that specifies the shutdown type for the event. The possible values are:

v HWMCA_SHUTDOWN_CONSOLE - the console has been shut down and will take manual
intervention to be restarted,

v HWMCA_RESTART_APPLICATION - the console application has been stopped and will
automatically be restarted, or

v HWMCA_RESTART_CONSOLE - the console has been stopped and will automatically be restarted.
4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Chapter 3. Console application APIs 17

HWMCA_EVENT_HARDWARE_MESSAGE_DELETE: Used to notify the application that a hardware
message associated with an object managed by the Console application or the Console application itself,
has been deleted. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a hardware message

(HWMCA_HARDWARE_MESSAGE).
2. An HWMCA_TYPE_OCTETSTRING that specifies the message text for the hardware message being

deleted.
3. An HWMCA_TYPE_INTEGER that is always set to HWMCA_FALSE for this event.
4. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the hardware message being

deleted.
5. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s) associated

with the object for which the hardware message is being deleted. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image name(s).
When receiving this event from a Support Element Console, this value contains the name(s) of the
CPC Images that are running on the CPC that the Support Element Console is controlling.
When receiving this event from a Hardware Management Console, this value:
v Contains no CPC Image names for hardware messages for the Hardware Management Console

itself
v Contains no CPC Image names for Optical Network related hardware messages
v Contains the name(s) of the CPC Images that are running on the CPC that the hardware message

pertains to.
6. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Note: The application should ensure that it provides a buffer that is at least large enough to hold the
HWMCA_DATATYPE_T structures and associated data for the event notification object identifier and
type. A constant, HWMCA_MIN_EVENT_BUF_SIZE is provided to the application for this purpose. In
addition, another constant, HWMCA_MAX_EVENT_BUF_SIZE is provided to the application. This
constant can be used to allocate a buffer large enough to hold any event notification. It is important to
note that although the HWMCA_MAX_EVENT_BUF_SIZE constant can be used to allocate a buffer large
enough for any event, it is not intended to indicate a buffer of this size is large enough for all HwmcaGet
requests.

HWMCA_EVENT_SECURITY_EVENT: Used to notify the application that a security event has been
logged.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the security log.
2. An HWMCA_TYPE_OCTETSTRING that specifies the text of the security log.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case the console itself).

HWMCA_EVENT_CAPACITY_CHANGE: Used to notify the application that the processing capacity
for a Defined CPC object has changed in some manner. The additional data for this event consists of the
following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies the type of capacity change that occurred, using one of

the following constants:
v HWMCA_CAPACITY_FENCED_BOOK A processor book has been fenced and is not longer usable.
v HWMCA_CAPACITY_DEFECTIVE_PROCESSOR A processor has become defective.

18 Application Programming Interfaces

v HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE A concurrent processor book replacement
has been performed.

v HWMCA_CAPACITY_CONCURRENT_BOOK_ADD A concurrent processor book addition has
been performed.

v HWMCA_CAPACITY_CHECK_STOP A processor has gone into a check stopped state.
v HWMCA_CAPACITY_CHANGES_ALLOWED A user has configured the APIs to be allowed to

perform capacity changes.
v HWMCA_CAPACITY_CHANGES_NOT_ALLOWED A user has configured the APIs to no longer

be allowed to perform capacity changes.
2. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a Defined CPC object).

HWMCA_EVENT_CAPACITY_RECORD_CHANGE: Used to notify the application that a change has
occurred to a temporary capacity record. The additional data for this event consists of the following
object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies the type of capacity record change that occurred, using

one of the following constants:
v HWMCA_CAPACITY_RECORD_ADD The capacity record has been added to the machine.
v HWMCA_CAPACITY_RECORD_DELTA The capacity record has been modified.
v HWMCA_CAPACITY_RECORD_DELETE The capacity record has been deleted.
v HWMCA_CAPACITY_RECORD_ACCOUNTING
v HWMCA_CAPACITY_ACTIVATION_LEVEL The capacity record has changed it's level of

activation (either more resources from this record have been added or removed from the machine).
v HWMCA_CAPACITY_PRIORITY_PENDING Additional capacity has been added for the capacity

record, with priority, but not enough resources were available to allow for all the capacity specified
to be put into effect. As resources become available they will be added for this record in order to
completely satisfy the original request for additional capacity.

v HWMCA_CAPACITY_RECORD_OTHER The capacity record has changed in some other manner.
2. An HWMCA_TYPE_OCTETSTRING for the temporary capacity record identifier that has changed.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a Defined CPC object).

HWMCA_EVENT_DISABLED_WAIT: Used to notify the application that a CPC Image object has
entered a disabled wait state. The additional data for this event consists of the following object
identifier/value pairs:
1. An HWMCA_TYPE_OCTETSTRING for the name of the Defined CPC that is associated with the CPC

Image that entered a disabled wait state.
2. An HWMCA_TYPE_OCTETSTRING for the disabled wait PSW value.
3. An HWMCA_TYPE_INTEGER for the partition identifier of the CPC Image that entered a disabled

wait state.
4. An HWMCA_TYPE_INTEGER for the number of the processor that entered a disabled wait state.
5. An HWMCA_TYPE_OCTETSTRING for the serial number of the Defined CPC that is associated with

the CPC Image that entered a disabled wait state.
6. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a CPC Image object).
7. An HWMCA_TYPE_INTEGER that specifies if the disabled wait event was due to an SCP initiated

reset (HWMCA_TRUE) or not (HWMCA_FALSE).

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs. An application should always
perform an HwmcaTerminate whenever a successful HwmcaInitialize has been done after the application

Chapter 3. Console application APIs 19

has completed all the activities that are required using the Data Exchange APIs and Commands API.
(Refer to “Function prototypes” on page 59 for the C function prototype for this API.) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaTerminate to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaTerminate API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the terminate request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Once the HwmcaTerminate has been successfully called, the HWMCA_INITIALIZE_T structure can then
be used for another purpose or freed, depending on the needs of the application.

HwmcaBuildId
A convenience routine to aid the application program in constructing an object identifier for any object
supported by the Console. (Refer to “Function prototypes” on page 59 for the C function prototype for
this API.) The arguments specified for this API are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszPrefix
A pointer to the prefix string to be used for the object identifier to be built. Any of the valid
prefixes defined in the Data Exchange APIs include file can be used, such as:
v HWMCA_CONSOLE_ID
v HWMCA_CFG_CPC_GROUP_ID
v HWMCA_CFG_CPC_ID
v HWMCA_CPC_IMAGE_GROUP_ID
v HWMCA_CPC_IMAGE_ID
v HWMCA_GROUPS_GROUP_ID
v HWMCA_GROUPS_OBJECT_ID
v HWMCA_COMMAND_PREFIX
v HWMCA_ACT_RESET_OBJECT_ID
v HWMCA_ACT_IMAGE_OBJECT_ID
v HWMCA_ACT_LOAD_OBJECT_ID
v HWMCA_ACT_GROUP_OBJECT_ID
v HWMCA_CAPACITY_RECORD_OBJECT_ID
v HWMCA_CFG_VM_GROUP_ID
v HWMCA_VM_OBJECT_ID

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. This can be
specified as NULL, when building an identifier for an object itself, as opposed to an attribute
object identifier. (Any of the HWMCA_*_SUFFIX constants can be specified in this argument.)

pszGroupName
A pointer to the group name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined group or an object contained within a
predefined group.

20 Application Programming Interfaces

pszObjectName
A pointer to the object name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined or user-defined group object.

Note: Refer to “Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

HwmcaBuildAttributeId
A convenience routine to aid the application program in constructing an attribute object identifier for any
object supported by the Console, based on the object identifier of the object itself. (Refer to “Function
prototypes” on page 59 for the C function prototype for this API.) The arguments specified for this API
are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszObjectID
A pointer to the object identifier of the object for which the attribute identifier is to be built.

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. (Any of the
HWMCA_*_SUFFIX constants can be specified in this argument.)

Note: Refer to “Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

Commands API
Allows other applications, local or remote, the ability to execute commands against the objects that the
Console application manages. Specifically, this support will allow other applications to request the
Console applications to perform the following commands:
v Activate
v Reset Normal
v Reset Clear
v Deactivate
v Send Operating System command
v Start
v Stop
v PSW Restart
v Load
v Hardware Message Refresh
v Hardware Message Delete
v Activate CBU
v Undo CBU
v Import Profile
v Export Profile
v Reserve
v External Interrupt
v SCSI Load
v SCSI Dump
v Shutdown/Restart
v Activate On/Off CoD
v Undo On/Off CoD
v Add Temporary Capacity
v Remove Temporary Capacity
v Swap Current Time Server
v Set STP Configuration

Chapter 3. Console application APIs 21

v Change STP-only CTN
v Join STP-only CTN
v Leave STP-only CTN

The Commands API uses the Simple Network Management Protocol (SNMP) as the transport mechanism.
The underlying SNMP protocol is encapsulated in the HwmcaCommand API in order to reduce the
complexities for the application programmer. Refer to following pages for additional information about
the HwmcaCommand.

HwmcaCommand
Used to perform a command against a specific object managed by the Console. (Refer to “Function
prototypes” on page 59 for the C function prototype for this API.) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pszObjectID
A pointer to a null terminated object identifier string for the target object of the command. Refer
to Chapter 4, “Console application managed objects,” on page 75 for more information about the
object identifiers that the Console manages.

pszCommandID
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed. Valid values for this argument are:
v HWMCA_ACTIVATE_COMMAND
v HWMCA_DEACTIVATE_COMMAND
v HWMCA_RESETNORMAL_COMMAND
v HWMCA_START_COMMAND
v HWMCA_STOP_COMMAND
v HWMCA_PSWRESTART_COMMAND
v HWMCA_SEND_OPSYS_COMMAND
v HWMCA_LOAD_COMMAND
v HWMCA_HW_MESSAGE_REFRESH_COMMAND
v HWMCA_RESETCLEAR_COMMAND
v HWMCA_HW_MESSAGE_DELETE_COMMAND
v HWMCA_ACTIVATE_CBU_COMMAND
v HWMCA_UNDO_CBU_COMMAND
v HWMCA_IMPORT_PROFILE_COMMAND
v HWMCA_EXPORT_PROFILE_COMMAND
v HWMCA_RESERVE_COMMAND
v HWMCA_EXTERNAL_INTERRUPT_COMMAND
v HWMCA_SCSI_LOAD_COMMAND
v HWMCA_SCSI_DUMP_COMMAND
v HWMCA_SHUTDOWN_RESTART_COMMAND
v HWMCA_ACTIVATE_OOCOD_COMMAND
v HWMCA_UNDO_OOCOD_COMMAND
v HWMCA_ADD_CAPACITY_COMMAND
v HWMCA_REMOVE_CAPACITY_COMMAND
v HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
v HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
v HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
v HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
v HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND

pDatatype
A pointer to a linked list of HWMCA_DATATYPE_T structures used to represent the arguments
to be passed to the specified command.

22 Application Programming Interfaces

The HwmcaCommand API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the command request was successfully delivered for
execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates successful
completion.

Once the application determines that the command request has been successfully delivered to the
Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE event notification(s)
for this command request. This is accomplished through the use of the HwmcaWaitEvent. All applications
are implicitly registered for this event type. The HWMCA_EVENT_COMMAND_RESPONSE event
notification will contain:
v Object identifier of the object for which command request was targeted,
v Object identifier for the command that was requested to be executed,
v Return code value that can be used to determine the success or failure of the command request, and
v An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event

notification that should be expected for this command.

Refer to “HwmcaWaitEvent” on page 13 for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

The exceptions to this rule are HWMCA_HW_MESSAGE_REFRESH_COMMAND and
HWMCA_HW_MESSAGE_DELETE_COMMAND commands. There is no need to wait for a
HWMCA_EVENT_COMMAND_RESPONSE event notification for these commands. These commands
are finished once the HwmcaCommand has completed.

HwmcaCorrelatedCommand
Used to perform a command against a specific object managed by the Console. (Refer to “Function
prototypes” on page 59 for the C function prototype for this API.) While similar to the HwmcaCommand
API, this API call is intended to be used to allow the caller to specify some unique correlator data that
will then be provided back to the caller as part of the HWMCA_EVENT_COMMAND_RESPONSE
event, so that the caller can be sure that the event was a result of the command that it requested to be
executed. The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the HwmcaInitialize API.

pszObjectId
A pointer to a null terminated object identifier string for the target object of the command. Refer
to Chapter 4, “Console application managed objects,” on page 75 for more information about the
object identifiers that the Console manages.

pszCommandId
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed.

pDataType
A pointer to a linked list of HWMCA_DATATYPE_T structures used to represent the arguments
to be passed to the specified command.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaCorrelatedCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

pCorrelator
A pointer to the data to be used as a correlator for the specified command.

correlatorSize
The length of the correlator data.

Chapter 3. Console application APIs 23

The HwmcaCorrelatedCommand API returns an unsigned long integer return code value to the calling
application. This return code lets the calling application know if the command request was successfully
delivered for execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates
successful completion. Once the application determines that the command request has been successfully
delivered to the Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE
event notification(s) for this command request. This is accomplished through the use of the
HwmcaWaitEvent. All applications are implicitly registered for this event type. The
HWMCA_EVENT_COMMAND_RESPONSE event notification will contain:
v Object identifier of the object for which command request was targeted,
v Object identifier for the command that was requested to be executed,
v Return code value that can be used to determine the success or failure of the command request, and
v An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event

notification that should be expected for this command.
v The command correlator specified when the command was invoked.

Refer to “HwmcaWaitEvent” on page 13 for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

Command arguments
The acceptable and/or required arguments for each command are as follows.

HWMCA_ACTIVATE_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Activation profile name
Name of the activation profile to be used for the Activate command. The default is to use
the profile name specified in the Activation profile name attribute for the specified object.

Force indicator
An indicator used to request conditional processing of the Activate command depending
on the state of the target object. The default is to unconditionally perform the command
(that is, FORCE=TRUE) no matter what the state of the target object is.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Activation profile name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the activation profile name (including the null terminator).

24 Application Programming Interfaces

pData A pointer to the activation profile name itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_DEACTIVATE_COMMAND
No arguments are required, but optionally a Force indicator can be specified for the Deactivate
command. If this argument is not specified, then the default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is. The fields of
the HWMCA_DATATYPE_T structure used to describe the optional Force indicator are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETNORMAL_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Normal command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Normal command. The default is to not
associate an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

Chapter 3. Console application APIs 25

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETCLEAR_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Clear command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Clear command. The default is to not associate
an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

26 Application Programming Interfaces

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_START_COMMAND
No arguments are accepted or required.

HWMCA_STOP_COMMAND
No arguments are accepted or required.

HWMCA_PSWRESTART_COMMAND
No arguments are accepted or required.

HWMCA_SEND_OPSYS_COMMAND
This command requires the following two arguments:
v An indication of whether this is a priority operating system command
v The text of the operating system command.

The fields of the HWMCA_DATATYPE_T structures used to describe these two arguments are:

Priority Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for priority operating system
commands or HWMCA_FALSE for nonpriority operating system commands.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the operating system command itself.

Operating System Command Text

ucType
Should be set to HWMCA_TYPE_OCTETSTRING

ulLength
Should be set to the length of the operating system command (including the null
terminator).

Chapter 3. Console application APIs 27

Note: The operating system command itself should have a length of at least one byte, not
including the null terminator.

pData Should be a pointer to the operating system command itself.

pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the Load. The default will be to use
the Load address last used when a Load was performed for the object.

Load parameter
Parameter string to be used when performing the Load. The default will be to use the
Load parameter last used when a Load was performed for the object.

Clear indicator
Whether or not memory should be cleared before performing the Load. The default is to
clear memory before performing the Load.

Timeout
Amount of time (in seconds) to wait for the Load to complete. The default timeout is 60
seconds.

Store status indicator
Whether or not status should be stored before performing the Load. The default is not to
store status before performing the Load.

Force indicator
An indicator used to request conditional processing of the Load command depending on
the state of the target object. The default is to unconditionally perform the command (that
is, FORCE=TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Load command. The default is to not associate an IPL
token with the command.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

28 Application Programming Interfaces

ulLength
Should be set to the length of the address string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to 6 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the Load. This string must consist of only hexadecimal characters.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the parameter string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to nine characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Clear indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for memory to be cleared
before performing the Load or HWMCA_FALSE to bypass the clearing of memory before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Timeout

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the timeout value that is to be used when performing the
Load. This value must be between 60 seconds and 600 seconds.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Store status indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

Chapter 3. Console application APIs 29

pData A pointer to a field containing the value HWMCA_TRUE for status to be stored before
performing the Load or HWMCA_FALSE to bypass the storing of status before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_HW_MESSAGE_REFRESH_COMMAND
No arguments are accepted or required.

HWMCA_HW_MESSAGE_DELETE_COMMAND
This command requires the following argument:
v The time stamp of the hardware message.

The fields of the HWMCA_DATATYPE_T structure used to describe the time stamp value are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the time stamp (including the null terminator).

pData A pointer to the time stamp string itself.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_ACTIVATE_CBU_COMMAND
This command has one required and one optional argument:
v An indicator of whether a real or test CBU activation should be performed is required.
v The password used to validate the CBU activation is optional. If not specified, the password

will be obtained automatically from the IBM support system.

The fields of the HWMCA_DATATYPE_T structure used to describe these arguments are:

Real/Test Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

30 Application Programming Interfaces

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for a real CBU activation or
HWMCA_FALSE for a test CBU activation.

pNext Should be set to NULL, if this is the last argument to being specified, or this should point
to the HWMCA_DATATYPE_T structure used to describe the next argument.

Password

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the password (including the null terminator).

pData A pointer to the password string itself.

pNext Should be set to NULL, if this is the last argument expected for this command.

HWMCA_UNDO_CBU_COMMAND
No arguments are accepted or required.

HWMCA_IMPORT_PROFILE_COMMAND
This command requires the following argument:
v The profile area to be imported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be imported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_EXPORT_PROFILE_COMMAND
This command requires the following argument:
v The profile area to be exported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be exported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_RESERVE_COMMAND
Note: This command is available only on a Support Element console. After successfully issuing
this command to request the reserve, all API command requests and the majority of other API
requests will be blocked, including those from the issuer of the reserve request, until the reserve
is released.

This command requires the following arguments:
v An indicator of whether the reserve is being requested or released.
v The name of the application requesting/releasing the reserve (exclusive control).

Chapter 3. Console application APIs 31

The fields of the HWMCA_DATATYPE_T structure used to describe these two arguments are:

Request/Release Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE when requesting the reserve or
HWMCA_FALSE when releasing the reserve.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the application name.

Application Name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the application name (including the null terminator). The
length of this field including the null terminator must be less than or equal to 9
characters.

pData A pointer to the application itself.

pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_EXTERNAL_INTERRUPT_COMMAND
This command requires the following argument:
v The number of the processor that is the target of the external interrupt command. This is a

number between zero and the maximum number of processors for the target CPC Image object.

The fields of the HWMCA_DATATYPE_T structure used to describe the application name are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to the processor number.

pNext Should be set to NULL, since this command only accepts one argument.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

HWMCA_SCSI_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Load. The default will be to
use the Load address last used when a SCSI Load was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Load. The default will be to use
the Load parameter last used when a SCSI Load was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Load. The default will be to
use the worldwide port name last used when a SCSI Load was performed for the object.

32 Application Programming Interfaces

Logical unit number
The logical unit number (LUN) to be used for the SCSI Load. The default will be to use
the logical unit number last used when a SCSI Load was performed for the object.

Boot program selector
The boot program selector to be used for the SCSI Load. The default will be to use the
boot program selector last used when a SCSI Load was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Load. The default
will be to use the operating system specific load parameters last used when a SCSI Load
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Load. The default will be to
use the boot record logical block address last used when a SCSI Load was performed for
the object.

Force indicator
An indicator used to request conditional processing of the SCSI Load command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData
A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

Chapter 3. Console application APIs 33

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Load (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Load (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 - 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

34 Application Programming Interfaces

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Load. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SCSI_DUMP_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Dump. The default will be to
use the Load address last used when a SCSI Dump was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Dump. The default will be to use
the Load parameter last used when a SCSI Dump was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Dump. The default will be to
use the worldwide port name last used when a SCSI Dump was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Dump. The default will be to use
the logical unit number last used when a SCSI Dump was performed for the object.

Chapter 3. Console application APIs 35

Boot program selector
The boot program selector to be used for the SCSI Dump. The default will be to use the
boot program selector last used when a SCSI Dump was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Dump. The default
will be to use the operating system specific load parameters last used when a SCSI Dump
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Dump. The default will be
to use the boot record logical block address last used when a SCSI Dump was performed
for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Dump command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

36 Application Programming Interfaces

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Dump (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Dump (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 to 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

Chapter 3. Console application APIs 37

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SHUTDOWN_RESTART_COMMAND
This command requires the following argument:
v An indicator of the type of shutdown or restart to be performed.

The fields of the HWMCA_DATATYPE_T structure used to describe this shutdown/restart type
are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing one of the following values:

38 Application Programming Interfaces

v HWMCA_RESTART_APPLICATION - Used to indicate the Console application is to be
restarted.

Note: For Support Element consoles, this value will implicitly cause the Console to be
restarted.

v HWMCA_RESTART_CONSOLE - Used to indicate the Console is to be restarted.
v HWMCA_SHUTDOWN_CONSOLE - Used to indicate the Console is to be

shutdown/powered off.
v HWMCA_RESTART_APPLICATION_ALTERNAT E - Used to indicate the Alternate

Support Element Console application is to be restarted. This option is only valid for the
Support Element Console.

v HWMCA_RESTART_CONSOLE_ALTERNATE -Used to indicate the Alternate Support
Element Console is to be restarted. This option is only valid for the Support Element
Console.

Note: This value will implicitly cause the Alternate Console to be restarted.
v HWMCA_SHUTDOWN_CONSOLE_ALTERNATE - Used to indicate the Alternate

Support Element Console is to be shutdown/powered off. This option is only valid for
the Support Element Console.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_ACTIVATE_OOCOD_COMMAND
This command requires the following argument:
v The order number of the On/Off Capacity on Demand (On/Off CoD) record to be activated.

The fields of the HWMCA_DATATYPE_T structure used to describe the order number are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the order number string (including the null terminator).

pData A pointer to the string itself.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_UNDO_OOCOD_COMMAND
No arguments are accepted or required.

HWMCA_ADD_CAPACITY_COMMAND
This command, which is used to add temporary capacity to a Defined CPC object, requires the
following argument:
v An XML fragment describing the temporary capacity to be added. This XML is used to

describe:
– the identifier of the capacity record to be used,
– the software model to be used for the capacity addition (optional),
– the delta processor information to be used for the capacity addition (optional),
– an indicator for whether the capacity addition is a priority request, (optional, default false),

and
– an indicator for whether the additional capacity is to be added as test or real.

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

Chapter 3. Console application APIs 39

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_REMOVE_CAPACITY_COMMAND
This command, which is used to remove temporary capacity from a Defined CPC object, requires
the following argument:
v An XML fragment describing the temporary capacity to be removed. This XML is used to

describe:
– the identifier of the capacity record to be used,
– the software model to be used for the capacity removal (optional), and
– the delta processor information to be used for the capacity removal (optional).

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
In a configured STP-only Coordinated Timing Network (CTN), one CPC has the role of Current
Time Server (CTS). If the CTN has both a Preferred Time Server and a Backup Time Server
configured, either one can be the CTS. This command swaps the role of CTS from Preferred Time
Server to Backup Time Server or vice versa. The target system must be the system that will
become the CTS.

This command requires the following argument:

STP ID
A string representing the current STP identifier for the Defined CPC object.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.

pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
This command sets the configuration for an STP-only Coordinated Timing Network (CTN). The
target system must be the system that will become the Current Time Server (CTS).

40 Application Programming Interfaces

This command requires the following arguments:

STP ID
A string representing the current STP identifier for the Defined CPC object. This is used
to verify that the CPC is a member of correct CTN.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.

pNext Should be set to the HWMCA_DATATYPE_T structure used to describe the next
argument.

Force Indicator
An indicator used to request conditional processing of the command depending on the
state of the target object.

The fields of the HWMCA_DATATYPE_T structure used to describe the Force Indicator
are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

pNext Should point to the HWMCA_DATATYPE_T structure used to describe the next
argument.

STP Config XML
An XML fragment describing the configuration for the STP-only CTN. This XML
describes:
v the identifier for the STP-only CTN (optional)
v the identity of the CPC to act as Preferred Time Server for the CTN
v the identity of the CPC to act as Backup Time Server for the CTN (optional)
v the identity of the CPC to act as Arbiter for the CTN (optional)
v an indicator of which CPC has the role of Current Time Server (Preferred Time Server

or Backup Time Server)

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of
this XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP-only CTN
configuration are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP Configuration data XML string.

pData A pointer to the STP Configuration data XML string.

pNext Should be set to NULL since this is the last argument accepted by this command.

Chapter 3. Console application APIs 41

HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND
This command, sent to the Defined CPC with the role of Current Time Server (CTS) in an
STP-only Coordinated Timing Network (CTN), changes the STP ID portion of the CTN ID for the
entire STP-only CTN.

This command requires the following argument:

STP ID
A string representing the desired STP identifier for the Defined CPC object and all CPCs
that are members of the same STP-only CTN.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.

pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
This command allows a CPC to join an STP-only Coordinated Timing Network (CTN). The target
system cannot be the Current Time Server. If the CPC is already participating in an STP-only
CTN, it will be removed from that CTN and join the specified one. If the CPC has an ETR ID, it
will be removed.

This command requires the following argument:

STP ID
A string representing the STP identifier of the CTN that the Defined CPC object is joining.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.

pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND
This command removes a CPC from an STP-only Coordinated Timing Network (CTN). The target
system cannot be the Current Time Server.

No arguments are accepted or required.

Data exchange APIs and commands API structures and definitions
The following structure and constant definitions can be found in the Data Exchange APIs. The most up to
date copy of this code is available on Resource Link at http://www.ibm.com/servers/resourcelink. Click
Services, and then Click API.

42 Application Programming Interfaces

Constant definitions

/**/
/* Defines for the Console Data Exchange */
/* Return Code Values. */
/**/
#define HWMCA_DE_NO_ERROR 0
#define HWMCA_DE_NO_SUCH_OBJECT 1
#define HWMCA_DE_INVALID_DATA_TYPE 2
#define HWMCA_DE_INVALID_DATA_LENGTH 3
#define HWMCA_DE_INVALID_DATA_PTR 4
#define HWMCA_DE_INVALID_DATA_VALUE 5
#define HWMCA_DE_INVALID_INIT_PTR 6
#define HWMCA_DE_INVALID_ID_PTR 7
#define HWMCA_DE_INVALID_BUF_PTR 8
#define HWMCA_DE_INVALID_BUF_SIZE 9
#define HWMCA_DE_INVALID_DATATYPE_PTR 10
#define HWMCA_DE_INVALID_TARGET 11
#define HWMCA_DE_INVALID_EVENT_MASK 12
#define HWMCA_DE_INVALID_PARAMETER 13
#define HWMCA_DE_READ_ONLY_OBJECT 14
#define HWMCA_DE_SNMP_INIT_ERROR 15
#define HWMCA_DE_INVALID_OBJECT_ID 16
#define HWMCA_DE_REQUEST_ALLOC_ERROR 17
#define HWMCA_DE_REQUEST_SEND_ERROR 18
#define HWMCA_DE_TIMEOUT 19
#define HWMCA_DE_REQUEST_RECV_ERROR 20
#define HWMCA_DE_SNMP_ERROR 21
#define HWMCA_DE_INVALID_TIMEOUT 22
#define HWMCA_DE_OBJECT_BUSY 24
#define HWMCA_DE_INVALID_HOST 28
#define HWMCA_DE_INVALID_COMMUNITY 29
#define HWMCA_DE_INVALID_QUALIFIER 30
#define HWMCA_DE_PROTOCOL_ERROR 31
#define HWMCA_DE_INVALID_EVENT_ERROR 32
#define HWMCA_DE_INVALID_STACKNAME 97
#define HWMCA_DE_REQUIRES_QUALIFIER 98
#define HWMCA_DE_TRANSPORT_ERROR 99

Chapter 3. Console application APIs 43

|
|
|

/**/
/* Defines for the Console Command Return Code Values */
/**/
#define HWMCA_CMD_NO_ERROR 0
#define HWMCA_CMD_NO_SUCH_OBJECT 1
#define HWMCA_CMD_INVALID_DATA_TYPE 2
#define HWMCA_CMD_INVALID_DATA_LENGTH 3
#define HWMCA_CMD_INVALID_DATA_PTR 4
#define HWMCA_CMD_INVALID_DATA_VALUE 5
#define HWMCA_CMD_INVALID_INIT_PTR 6
#define HWMCA_CMD_INVALID_ID_PTR 7
#define HWMCA_CMD_INVALID_DATATYPE_PTR 10
#define HWMCA_CMD_INVALID_PARAMETER 13
#define HWMCA_CMD_REQUEST_ALLOC_ERROR 17
#define HWMCA_CMD_REQUEST_SEND_ERROR 18
#define HWMCA_CMD_TIMEOUT 19
#define HWMCA_CMD_REQUEST_RECV_ERROR 20
#define HWMCA_CMD_SNMP_ERROR 21
#define HWMCA_CMD_INVALID_TIMEOUT 22
#define HWMCA_CMD_INVALID_CMD 23
#define HWMCA_CMD_OBJECT_BUSY 24
#define HWMCA_CMD_INVALID_OBJECT 25
#define HWMCA_CMD_COMMAND_FAILED 26
#define HWMCA_CMD_INITTERM_OK 27
#define HWMCA_CMD_CBU_DISRUPTIVE_OK 28
#define HWMCA_CMD_CBU_PARTIAL_HW 29
#define HWMCA_CMD_CBU_NO_SPARES 30
#define HWMCA_CMD_CBU_TEMPORARY 31
#define HWMCA_CMD_CBU_NOT_ENABLED 32
#define HWMCA_CMD_CBU_NOT AUTHORIZED 33
#define HWMCA_CMD_CBU_FAILED 34
#define HWMCA_CMD_CBU_ALREADY_ACTIVE 35
#define HWMCA_CMD_CBU_INPROGRESS 36
#define HWMCA_CMD_CBU_CPSAP_SPLIT_CHG 37
#define HWMCA_CMD_INVALID_MACHINE_STATE 38
#define HWMCA_CMD_NO_RECORDID 39
#define HWMCA_CMD_NO_SW_MODEL 40
#define HWMCA_CMD_NOT_ENOUGH_RESOURCES 41
#define HWMCA_CMD_NOT_ENOUGH_ACTIVE_RESOURCES 42
#define HWMCA_CMD_ACT_LESS_RESOURCES 43
#define HWMCA_CMD_DEACT_MORE_RESOURCES 44
#define HWMCA_CMD_ACT_TYPE_MISMATCH 45
#define HWMCA_CMD_API_NOT_ALLOWED 46
#define HWMCA_CMD_CDU_IN_PROGRESS 47
#define HWMCA_CMD_MIRRORING_RUNNING 48
#define HWMCA_CMD_COMMUNICATIONS_NOT_ACTIVE 49
#define HWMCA_CMD_RECORD_EXPIRED 50
#define HWMCA_CMD_PARTIAL_CAPACITY 51
#define HWMCA_CMD_INVALID_REQUEST 52
#define HWMCA_CMD_ALREADY_ACTIVE 53

44 Application Programming Interfaces

#define HWMCA_CMD_RESERVE_HELD 54
#define HWMCA_CMD_GENERAL_XML_PARSING_ERROR 55
#define HWMCA_CMD_STP_NOT_ENABLED 56
#define HWMCA_CMD_STP_MUST_TARGET_CTS 57
#define HWMCA_CMD_STP_INVALID_CONFIG_SPECIFIED 58
#define HWMCA_CMD_STP_WRONG_CTN 59
#define HWMCA_CMD_STP_NOT_VALID_FOR_CTS 60
#define HWMCA_CMD_STP_IN_ETR_MIGRATION 61
#define HWMCA_CMD_STP_NODE_NOT_FOUND_IN_SYSTEM_LIST 62
#define HWMCA_CMD_STP_CTNID_TAG_ERROR 63
#define HWMCA_CMD_STP_NODE_TAG_ERROR 64
#define HWMCA_CMD_STP_CONFIG_TAG_NOT_FOUND 65
#define HWMCA_CMD_STP_ACTIVE_CTS_TAG_ERROR 66
#define HWMCA_CMD_STP_INITIALIZE_INCOMPLETE 67
#define HWMCA_CMD_STP_INVALID_STP_ID 68
#define HWMCA_CMD_STP_LINKS_ERROR 69
#define HWMCA_CMD_STP_REQUIRES_FORCE_TO_CONFIGURE 70

***/
/* Defines for the Console Rexx I/F Return Code Value */
/**/
#define HWMCA_RX_INVALID_STEM_VAR 1000

/**/
/* Miscellaneous defines for the Console APIs. */
/**/
#define HWMCA_INFINITE_WAIT -1
#define HWMCA_MAX_ID_LEN 80
#define HWMCA_MAX_COMMUNITY_LEN 16
#define HWMCA_MIN_EVENT_BUF_SIZE ((sizeof(HWMCA_DATATYPE_T)*2)+4+HWMCA_MAX_ID_LEN)
#define HWMCA_MAX_EVENT_BUF_SIZE (HWMCA_MIN_EVENT_BUF_SIZE+4+9+8+9+4+4+4+9+4+4096+\

(((sizeof(HWMCA_DATATYPE_T)*2)+HWMCA_MAX_ID_LEN)*11))
#define HWMCA_TRUE 1
#define HWMCA_FALSE 0
#define HWMCA_API_PORT 3161

/**/
/* Defines for the Console Object Data Types. */
/**/
#define HWMCA_TYPE_SEQUENCE 0x30
#define HWMCA_TYPE_INTEGER 0x02
#define HWMCA_TYPE_OCTETSTRING 0x04
#define HWMCA_TYPE_NULL 0x05
#define HWMCA_TYPE_OBJECTID 0x06
#define HWMCA_TYPE_IPADDRESS 0x40
#define HWMCA_TYPE_COUNTER 0x41
#define HWMCA_TYPE_GAUGE 0x42
#define HWMCA_TYPE_TIMETICKS 0x43

Chapter 3. Console application APIs 45

/**/
/* Defines for the Console Event Notification Types. */
/**/
#define HWMCA_EVENT_COMMAND_RESPONSE 0x00000000
#define HWMCA_EVENT_MESSAGE 0x00000001
#define HWMCA_EVENT_STATUS_CHANGE 0x00000002
#define HWMCA_EVENT_NAME_CHANGE 0x00000004
#define HWMCA_EVENT_ACTIVATE_PROF_CHANGE 0x00000008
#define HWMCA_EVENT_CREATED 0x00000010
#define HWMCA_EVENT_DESTROYED 0x00000020
#define HWMCA_EVENT_EXCEPTION_STATE 0x00000040
#define HWMCA_EVENT_ENDED 0x00000080
#define HWMCA_EVENT_HARDWARE_MESSAGE 0x00000100
#define HWMCA_EVENT_OPSYS_MESSAGE 0x00000200
#define HWMCA_EVENT_NO_REFRESH_MESSAGE 0x00000400
#define HWMCA_EVENT_STARTED 0x00000800
#define HWMCA_EVENT_HARDWARE_MESSAGE_DELETE 0x00001000
#define HWMCA_EVENT_SECURITY_EVENT 0x00004000
#define HWMCA_EVENT_CAPACITY_CHANGE 0x00008000
#define HWMCA_EVENT_CAPACITY_RECORD_CHANGE 0x00010000
#define HWMCA_EVENT_DISABLED_WAIT 0x00040000
#define HWMCA_EVENT_ALL_EVENTS 0x0005FFFF
#define HWMCA_DIRECT_INITIALIZE 0x20000000
#define HWMCA_FORCE_CLIENT_PATH 0x10000000
#define HWMCA_SNMP_VERSION_2 0X08000000
#define HWMCA_TOLERATE_LOST_EVENTS 0X02000000
#define HWMCA_QUALIFIER_SPECIFIED 0x00800000
#define HWMCA_SNMP_USING_TCP 0x00400000
#define HWMCA_NO_EVENTS 0x00200000
#define HWMCA_RESEND_OPSYS_MESSAGES 0x00100000
#define HWMCA_EVENT_NO_COMMAND_RESPONSE 0x00020000

/**/
/* Defines for the Console Static Object IDs. */
/**/
#define HWMCA_OBJECT_PREFIX "1.3.6.1.4.1.2.6.42."
#define HWMCA_CONSOLE_ID "1.3.6.1.4.1.2.6.42.0" /* .x.x */
#define HWMCA_CFG_CPC_GROUP_ID "1.3.6.1.4.1.2.6.42.1" /* .x.x */
#define HWMCA_CFG_CPC_ID "1.3.6.1.4.1.2.6.42.1.0" /* .x.x.* */
#define HWMCA_CPC_IMAGE_GROUP_ID "1.3.6.1.4.1.2.6.42.2" /* .x.x */
#define HWMCA_CPC_IMAGE_ID "1.3.6.1.4.1.2.6.42.2.0" /* .x.x.* */
#define HWMCA_GROUPS_GROUP_ID "1.3.6.1.4.1.2.6.42.3" /* .x.x.* */
#define HWMCA_GROUPS_OBJECT_ID "1.3.6.1.4.1.2.6.42.3.0" /* .x.x.*.* */
#define HWMCA_COMMAND_PREFIX "1.3.6.1.4.1.2.6.42.4."
#define HWMCA_ACT_RESET_OBJECT_ID "1.3.6.1.4.1.2.6.42.5.0" /* .x.x.*.* */
#define HWMCA_ACT_IMAGE_OBJECT_ID "1.3.6.1.4.1.2.6.42.6.0" /* .x.x.*.* */
#define HWMCA_ACT_LOAD_OBJECT_ID "1.3.6.1.4.1.2.6.42.7.0" /* .x.x.*.* */
#define HWMCA_ACT_GROUP_OBJECT_ID "1.3.6.1.4.1.2.6.42.8.0" /* .x.x.*.* */
#define HWMCA_CAPACITY_RECORD_OBJECT_ID "1.3.6.1.4.1.2.6.42.9.0" /* .x.x.*.* */
#define HWMCA_CFG_VM_GROUP_ID "1.3.6.1.4.1.2.6.42.10" /* .x.x */
#define HWMCA_VM_OBJECT_ID "1.3.6.1.4.1.2.6.42.10.0" /* .x.x.* */

46 Application Programming Interfaces

/**/
/* Defines for the Hardware Management Console Object Attribute ID suffix */
/**/
#define HWMCA_COMMAND_OBJECT_ID_SUFFIX "0.1"
#define HWMCA_COMMAND_CONDITION_CODE_SUFFIX "0.2"
#define HWMCA_COMMAND_LAST_INDICATOR_SUFFIX "0.3"
#define HWMCA_ENDED_REASON_SUFFIX "0.4"
#define HWMCA_ENDED_COMPONENT_SUFFIX "0.5"
#define HWMCA_ENDED_TYPE_SUFFIX "0.6"
#define HWMCA_COMMAND_CORRELATOR_SUFFIX "0.7"
#define HWMCA_NAME_SUFFIX "1.0"
#define HWMCA_PARENT_NAME_SUFFIX "2.0"
#define HWMCA_OPSYS_NAME_SUFFIX "3.0"
#define HWMCA_OPSYS_TYPE_SUFFIX "4.0"
#define HWMCA_OPSYS_LEVEL_SUFFIX "5.0"
#define HWMCA_SYSPLEX_NAME_SUFFIX "6.0"
#define HWMCA_STATUS_ERROR_SUFFIX "7.0"
#define HWMCA_BUSY_SUFFIX "8.0"
#define HWMCA_MESSAGE_SUFFIX "9.0"
#define HWMCA_MESSAGE_TYPE_SUFFIX "9.1"
#define HWMCA_MESSAGE_TEXT_SUFFIX "9.2"
#define HWMCA_MESSAGE_MSG_ID_SUFFIX "9.3"
#define HWMCA_MESSAGE_DATE_SUFFIX "9.4"
#define HWMCA_MESSAGE_TIME_SUFFIX "9.5"
#define HWMCA_MESSAGE_ALARM_SUFFIX "9.6"
#define HWMCA_MESSAGE_PRIORITY_SUFFIX "9.7"
#define HWMCA_MESSAGE_HELD_SUFFIX "9.8"
#define HWMCA_MESSAGE_PROMPT_TEXT_SUFFIX "9.9"
#define HWMCA_MESSAGE_OSNAME_TEXT_SUFFIX "9.10"
#define HWMCA_MESSAGE_REFRESH_SUFFIX "9.11"
#define HWMCA_MESSAGE_TIMESTAMP "9.12"
#define HWMCA_MESSAGE_IMAGE_LIST "9.13"
#define HWMCA_STATUS_SUFFIX "10.0"
#define HWMCA_EXPECTED_STATUS_SUFFIX "11.0"
#define HWMCA_IMLMODE_SUFFIX "12.0"
#define HWMCA_ACTIVATION_PROFILE_SUFFIX "13.0"
#define HWMCA_LAST_ACT_PROFILE_SUFFIX "14.0"
#define HWMCA_IP_ADDRESS_SUFFIX "15.0"
#define HWMCA_SNA_ADDRESS_SUFFIX "16.0"
#define HWMCA_MODEL_SUFFIX "17.0"
#define HWMCA_TYPE_SUFFIX "18.0"
#define HWMCA_MACHINE_SERIAL_SUFFIX "19.0"
#define HWMCA_CPC_SERIAL_SUFFIX "20.0"
#define HWMCA_CPC_ID_SUFFIX "21.0"
#define HWMCA_OBJECT_TYPE_SUFFIX "22.0"
#define HWMCA_GROUP_CONTENTS_SUFFIX "23.0"
#define HWMCA_ACT_RESET_LIST_SUFFIX "24.0"
#define HWMCA_ACT_IMAGE_LIST_SUFFIX "25.0"
#define HWMCA_ACT_LOAD_LIST_SUFFIX "26.0"
#define HWMCA_ACT_PROFILE_IOCDS_SUFFIX "27.0"
#define HWMCA_ACT_PROFILE_IPLADDR_SUFFIX "28.0"
#define HWMCA_ACT_PROFILE_IPLPARM_SUFFIX "29.0"
#define HWMCA_WEIGHT_SUFFIX "30.0"
#define HWMCA_CAPPED_SUFFIX "31.0"
#define HWMCA_CBU_INSTALLED "32.0"
#define HWMCA_CBU_ACTIVATED "33.0"
#define HWMCA_CBU_ACTIVATION_DATE "34.0"
#define HWMCA_CBU_EXPIRATION_DATE "35.0"
#define HWMCA_NUMBER_CBU_TEST_LEFT "36.0"
#define HWMCA_REAL_CBU_ACTIVATION_AVAILABLE "37.0"
#define HWMCA_MINIMUM_WEIGHT_SUFFIX "38.0"
#define HWMCA_MAXIMUM_WEIGHT_SUFFIX "39.0"
#define HWMCA_WLM_MANAGED_SUFFIX "40.0"
#define HWMCA_CURRENT_WEIGHT_SUFFIX "41.0"
#define HWMCA_CURRENT_CAPPED_SUFFIX "42.0"
#define HWMCA_WORK_LOAD_UNITS_SUFFIX "43.0"
#define HWMCA_RESERVE_ID_SUFFIX "44.0"
#define HWMCA_ALERT_SUFFIX "45.0"
#define HWMCA_SERVICE_REQUIRED_SUFFIX "46.0"

Chapter 3. Console application APIs 47

#define HWMCA_ALERT_SUFFIX "45.0"
#define HWMCA_SERVICE_REQUIRED_SUFFIX "46.0"
#define HWMCA_DEGRADED_SUFFIX "47.0"
#define HWMCA_CBU_ENABLED_SUFFIX "48.0"
#define HWMCA_CLUSTER_NAME_SUFFIX "49.0"
#define HWMCA_CLUSTER_LIST_SUFFIX "50.0"
#define HWMCA_PARTITION_ID_SUFFIX "51.0"
#define HWMCA_ACT_PROFILE_IPLTYPE_SUFFIX "52.0"
#define HWMCA_ACT_PROFILE_WWPN_SUFFIX "53.0"
#define HWMCA_ACT_PROFILE_BPS_SUFFIX "54.0"
#define HWMCA_ACT_PROFILE_LUN_SUFFIX "55.0"
#define HWMCA_ACT_PROFILE_BRLBA_SUFFIX "56.0"
#define HWMCA_ACT_PROFILE_OSLOADPARM_SUFFIX "57.0"
#define HWMCA_EVENT_TEXT_SUFFIX "58.0"
#define HWMCA_EVENT_TIMESTAMP_SUFFIX "59.0"
#define HWMCA_IFA_WEIGHT_SUFFIX "60.0"
#define HWMCA_IFA_CAPPED_SUFFIX "61.0"
#define HWMCA_IFA_MINIMUM_WEIGHT_SUFFIX "62.0"
#define HWMCA_IFA_MAXIMUM_WEIGHT_SUFFIX "63.0"
#define HWMCA_IFA_CURRENT_WEIGHT_SUFFIX "64.0"
#define HWMCA_IFA_CURRENT_CAPPED_SUFFIX "65.0"
#define HWMCA_IFL_WEIGHT_SUFFIX "66.0"
#define HWMCA_IFL_CAPPED_SUFFIX "67.0"
#define HWMCA_IFL_MINIMUM_WEIGHT_SUFFIX "68.0"
#define HWMCA_IFL_MAXIMUM_WEIGHT_SUFFIX "69.0"
#define HWMCA_IFL_CURRENT_WEIGHT_SUFFIX "70.0"
#define HWMCA_IFL_CURRENT_CAPPED_SUFFIX "71.0"
#define HWMCA_ICF_WEIGHT_SUFFIX "72.0"
#define HWMCA_ICF_CAPPED_SUFFIX "73.0"
#define HWMCA_ICF_MINIMUM_WEIGHT_SUFFIX "74.0"
#define HWMCA_ICF_MAXIMUM_WEIGHT_SUFFIX "75.0"
#define HWMCA_ICF_CURRENT_WEIGHT_SUFFIX "76.0"
#define HWMCA_ICF_CURRENT_CAPPED_SUFFIX "77.0"
#define HWMCA_PROCESSOR_RUNNING_TIME_TYPE "78.0"
#define HWMCA_PROCESSOR_RUNNING_TIME "79.0"
#define HWMCA_END_TIMESLICE_IF_WAITSTATE "80.0"
#define HWMCA_IIP_WEIGHT_SUFFIX "81.0"
#define HWMCA_IIP_CAPPED_SUFFIX "82.0"
#define HWMCA_IIP_MINIMUM_WEIGHT_SUFFIX "83.0"
#define HWMCA_IIP_MAXIMUM_WEIGHT_SUFFIX "84.0"
#define HWMCA_IIP_CURRENT_WEIGHT_SUFFIX "85.0"
#define HWMCA_IIP_CURRENT_CAPPED_SUFFIX "86.0"
#define HWMCA_OOCOD_INSTALLED_SUFFIX "87.0"
#define HWMCA_OOCOD_ACTIVATED_SUFFIX "88.0"
#define HWMCA_OOCOD_ENABLED_SUFFIX "89.0"
#define HWMCA_OOCOD_ACTIVATION_DATE_SUFFIX "90.0"
#define HWMCA_ACT_GROUP_LIST_SUFFIX "91.0"
#define HWMCA_ACT_PROFILE_CAPACITY_SUFFIX "92.0"
#define HWMCA_GROUP_PROFILE_NAME_SUFFIX "93.0"

48 Application Programming Interfaces

#define HWMCA_ACT_PROFILE_LOAD_AT_ACTIVATION_SUFFIX "94.0"
#define HWMCA_ACT_PROFILE_CENTRAL_STORAGE_SUFFIX "95.0"
#define HWMCA_ACT_PROFILE_CENTRAL_STORAGE_RESERVED_SUFFIX "96.0"
#define HWMCA_ACT_PROFILE_EXPANDED_STORAGE_SUFFIX "97.0"
#define HWMCA_ACT_PROFILE_EXPANDED_STORAGE_RESERVED_SUFFIX "98.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_CP_SUFFIX "99.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_CP_RESERVED_SUFFIX "100.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IFA_SUFFIX "101.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IFA_RESERVED_SUFFIX "102.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IFL_SUFFIX "103.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IFL_RESERVED_SUFFIX "104.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_ICF_SUFFIX "105.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_ICF_RESERVED_SUFFIX "106.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IIP_SUFFIX "107.0"
#define HWMCA_ACT_PROFILE_NUM_DEDICATED_IIP_RESERVED_SUFFIX "108.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_CP_SUFFIX "109.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_CP_RESERVED_SUFFIX "110.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IFA_SUFFIX "111.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IFA_RESERVED_SUFFIX "112.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IFL_SUFFIX "113.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IFL_RESERVED_SUFFIX "114.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_ICF_SUFFIX "115.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_ICF_RESERVED_SUFFIX "116.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IIP_SUFFIX "117.0"
#define HWMCA_ACT_PROFILE_NUM_SHARED_IIP_RESERVED_SUFFIX "118.0"
#define HWMCA_CAPACITY_RECORD_LIST_SUFFIX "119.0"
#define HWMCA_PERM_SOFTWARE_MODEL_SUFFIX "120.0"
#define HWMCA_PERMBILL_SOFTWARE_MODEL_SUFFIX "121.0"
#define HWMCA_PERMALL_SOFTWARE_MODEL_SUFFIX "122.0"
#define HWMCA_PERM_MSU_SUFFIX "123.0"
#define HWMCA_PERMBILL_MSU_SUFFIX "124.0"
#define HWMCA_PERMALL_MSU_SUFFIX "125.0"
#define HWMCA_GEN_PROCESSOR_NUM_SUFFIX "126.0"
#define HWMCA_SAP_PROCESSOR_NUM_SUFFIX "127.0"
#define HWMCA_IFA_PROCESSOR_NUM_SUFFIX "128.0"
#define HWMCA_IFL_PROCESSOR_NUM_SUFFIX "129.0"
#define HWMCA_ICF_PROCESSOR_NUM_SUFFIX "130.0"
#define HWMCA_IIP_PROCESSOR_NUM_SUFFIX "131.0"
#define HWMCA_DEFECTIVE_PROCESSOR_NUM_SUFFIX "132.0"
#define HWMCA_SPARE_PROCESSOR_NUM_SUFFIX "133.0"
#define HWMCA_PENDING_PROCESSOR_NUM_SUFFIX "134.0"
#define HWMCA_RECORD_ID_SUFFIX "135.0"
#define HWMCA_RECORD_TYPE_SUFFIX "136.0"
#define HWMCA_RECORD_ACTIVATION_STATUS_SUFFIX "137.0"
#define HWMCA_RECORD_ACTIVATION_DATE_SUFFIX "138.0"
#define HWMCA_RECORD_EXPIRE_DATE_SUFFIX "139.0"
#define HWMCA_RECORD_ACT_EXPIRE_DATE_SUFFIX "140.0"
#define HWMCA_RECORD_MAX_REAL_ACT_DAYS_SUFFIX "141.0"
#define HWMCA_RECORD_MAX_TEST_ACT_DAYS_SUFFIX "142.0"
#define HWMCA_RECORD_REM_REAL_ACT_DAYS_SUFFIX "143.0"

Chapter 3. Console application APIs 49

#define HWMCA_RECORD_REM_TEST_ACT_DAYS_SUFFIX "144.0"
#define HWMCA_CAPACITY_CHANGE_TYPE_SUFFIX "145.0"
#define HWMCA_RECORD_CHANGE_TYPE_SUFFIX "146.0"
#define HWMCA_RECORD_REM_REAL_COUNT_SUFFIX "147.0"
#define HWMCA_RECORD_REM_TEST_COUNT_SUFFIX "148.0"
#define HWMCA_CAPACITY_CHANGE_ALLOWED_SUFFIX "149.0"
#define HWMCA_PSW_SUFFIX "150.0"
#define HWMCA_PROCESSOR_SUFFIX "150.1"
#define HWMCA_SCP_INITIATE_RESET_SUFFIX "150.2"
#define HWMCA_VERSION_SUFFIX "151.0"
#define HWMCA_POWER_VERSION_INFO_SUFFIX "152.0"
#define HWMCA_POWER_BUFFER_TAG_SUFFIX "153.0"
#define HWMCA_POWER_STATUS_REGISTER_SUFFIX "154.0"
#define HWMCA_POWER_EVENT_REGISTER_SUFFIX "155.0"
#define HWMCA_POWER_ERROR_REGISTER_SUFFIX "156.0"
#define HWMCA_POWER_EXHAUST_HEAT_INDEX_SUFFIX "157.0"
#define HWMCA_POWER_INLET_TEMP_SUFFIX "158.0"
#define HWMCA_POWER_AVG_POWER_SAMPLES_SUFFIX "159.0"
#define HWMCA_POWER_PEAK_POWER_SAMPLES_SUFFIX "160.0"
#define HWMCA_ALL_IP_ADDRESSES_SUFFIX "161.0"
#define HWMCA_EC_MCL_INFO_SUFFIX "162.0"
#define HWMCA_AUTO_SWITCH_ENABLED_SUFFIX "163.0"
#define HWMCA_IPL_TOKEN_SUFFIX "164.0"
#define HWMCA_SYSPLEX_TIME_STP_INFO_SUFFIX "165.0"
#define HWMCA_ACT_PROFILE_STORESTATUS_SUFFIX "166.0"
#define HWMCA_ACT_PROFILE_LOADTYPE_SUFFIX "167.0"
#define HWMCA_CPU_COUNTER_BASIC_ENABLED_SUFFIX "168.0"
#define HWMCA_CPU_COUNTER_PROBLEMSTATE_ENABLED_SUFFIX "169.0"
#define HWMCA_CPU_COUNTER_CRYPTOACTIVITY_ENABLED_SUFFIX "170.0"
#define HWMCA_CPU_COUNTER_EXTENDED_ENABLED_SUFFIX "171.0"
#define HWMCA_CPU_COUNTER_COPROCGROUP_ENABLED_SUFFIX "172.0"
#define HWMCA_CPU_SAMPLING_BASIC_ENABLED_SUFFIX "173.0"
#define HWMCA_PENDING_GEN_PROCESSOR_NUM_SUFFIX "175.0"
#define HWMCA_PENDING_SAP_PROCESSOR_NUM_SUFFIX "176.0"
#define HWMCA_PENDING_IFA_PROCESSOR_NUM_SUFFIX "177.0"
#define HWMCA_PENDING_IFL_PROCESSOR_NUM_SUFFIX "178.0"
#define HWMCA_PENDING_ICF_PROCESSOR_NUM_SUFFIX "179.0"
#define HWMCA_PENDING_IIP_PROCESSOR_NUM_SUFFIX "180.0"
#define HWMCA_ZBX_CHASSIS_LIST_SUFFIX "181.0"
#define HWMCA_POWER_BUFFER_SIZE_SUFFIX "182.0"
#define HWMCA_ENCRYPT_AES_FUNCTIONS_SUFFIX "183.0"
#define HWMCA_ENCRYPT_DEA_FUNCTIONS_SUFFIX "184.0"
#define HWMCA_LABEL_POWER_SUFFIX "185.0"
#define HWMCA_POWER_SAMPLE_RATE_SUFFIX "186.0"
#define HWMCA_GROUP_PROFILE_CAPACITY_SUFFIX "192.0"
#define HWMCA_LAST_USED_LOAD_ADDR_SUFFIX "201.0"
#define HWMCA_LAST_USED_LOAD_PARM_SUFFIX "202.0"
#define HWMCA_DESCRIPTION_SUFFIX "203.0"
#define HWMCA_OPERATING_MODE_SUFFIX "204.0"
#define HWMCA_CLOCK_TYPE_SUFFIX "205.0"
#define HWMCA_TIME_OFFSET_DAYS_SUFFIX "206.0"
#define HWMCA_TIME_OFFSET_HOURS_SUFFIX "207.0"
#define HWMCA_TIME_OFFSET_MINUTES_SUFFIX "208.0"
#define HWMCA_TIME_OFFSET_INCREASE_SUFFIX "209.0"
#define HWMCA_LICCC_VALIDATION_ENABLED_SUFFIX "210.0"
#define HWMCA_GLOBAL_PERFORMANCE_DATA_CONTROL_SUFFIX "211.0"
#define HWMCA_IO_CONFIGURATION_CONTROL_SUFFIX "212.0"
#define HWMCA_CROSS_PARTITION_AUTHORITY_SUFFIX "213.0"
#define HWMCA_LOGICAL_PARTITION_ISOLATION_SUFFIX "214.0"

50 Application Programming Interfaces

#define HWMCA_ABS_CAPPED_SUFFIX "217.0"
#define HWMCA_ABS_CAP_VALUE_SUFFIX "218.0"
#define HWMCA_IFA_ABS_CAPPED_SUFFIX "219.0"
#define HWMCA_IFA_ABS_CAP_VALUE_SUFFIX "220.0"
#define HWMCA_IFL_ABS_CAPPED_SUFFIX "221.0"
#define HWMCA_IFL_ABS_CAP_VALUE_SUFFIX "222.0"
#define HWMCA_ICF_ABS_CAPPED_SUFFIX "223.0"
#define HWMCA_ICF_ABS_CAP_VALUE_SUFFIX "224.0"
#define HWMCA_IIP_ABS_CAPPED_SUFFIX "225.0"
#define HWMCA_IIP_ABS_CAP_VALUE_SUFFIX "226.0"

Chapter 3. Console application APIs 51

|
|
|
|
|
|
|
|
|
|

/**/
/* Defines for the Console Command Object IDs. */
/**/
#define HWMCA_ACTIVATE_COMMAND "1.3.6.1.4.1.2.6.42.4.1"
#define HWMCA_DEACTIVATE_COMMAND "1.3.6.1.4.1.2.6.42.4.2"
#define HWMCA_SEND_OPSYS_COMMAND "1.3.6.1.4.1.2.6.42.4.3"
#define HWMCA_RESETNORMAL_COMMAND "1.3.6.1.4.1.2.6.42.4.4"
#define HWMCA_START_COMMAND "1.3.6.1.4.1.2.6.42.4.5"
#define HWMCA_STOP_COMMAND "1.3.6.1.4.1.2.6.42.4.6"
#define HWMCA_PSWRESTART_COMMAND "1.3.6.1.4.1.2.6.42.4.7"
#define HWMCA_INITIALIZE_API "1.3.6.1.4.1.2.6.42.4.8"
#define HWMCA_TERMINATE_API "1.3.6.1.4.1.2.6.42.4.9"
#define HWMCA_LOAD_COMMAND "1.3.6.1.4.1.2.6.42.4.10"
#define HWMCA_HW_MESSAGE_REFRESH_COMMAND "1.3.6.1.4.1.2.6.42.4.11"
#define HWMCA_RESETCLEAR_COMMAND "1.3.6.1.4.1.2.6.42.4.12"
#define HWMCA_HW_MESSAGE_DELETE_COMMAND "1.3.6.1.4.1.2.6.42.4.13"
#define HWMCA_ACTIVATE_CBU_COMMAND "1.3.6.1.4.1.2.6.42.4.14"
#define HWMCA_UNDO_CBU_COMMAND "1.3.6.1.4.1.2.6.42.4.15"
#define HWMCA_IMPORT_PROFILE_COMMAND "1.3.6.1.4.1.2.6.42.4.16"
#define HWMCA_EXPORT_PROFILE_COMMAND "1.3.6.1.4.1.2.6.42.4.17"
#define HWMCA_RESERVE_COMMAND "1.3.6.1.4.1.2.6.42.4.18"
#define HWMCA_EXTERNAL_INTERRUPT_COMMAND "1.3.6.1.4.1.2.6.42.4.19"
#define HWMCA_SCSI_LOAD_COMMAND "1.3.6.1.4.1.2.6.42.4.20"
#define HWMCA_SCSI_DUMP_COMMAND "1.3.6.1.4.1.2.6.42.4.21"
#define HWMCA_SHUTDOWN_RESTART_COMMAND "1.3.6.1.4.1.2.6.42.4.22"
#define HWMCA_ACTIVATE_OOCOD_COMMAND "1.3.6.1.4.1.2.6.42.4.23"
#define HWMCA_UNDO_OOCOD_COMMAND "1.3.6.1.4.1.2.6.42.4.24"
#define HWMCA_ADD_CAPACITY_COMMAND "1.3.6.1.4.1.2.6.42.4.25"
#define HWMCA_REMOVE_CAPACITY_COMMAND "1.3.6.1.4.1.2.6.42.4.26"
#define HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND "1.3.6.1.4.1.2.6.42.4.27"
#define HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND "1.3.6.1.4.1.2.6.42.4.28"
#define HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND "1.3.6.1.4.1.2.6.42.4.29"
#define HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND "1.3.6.1.4.1.2.6.42.4.30"
#define HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND "1.3.6.1.4.1.2.6.42.4.31"
#define HWMCA_LOAD_FROM_CDROM_COMMAND "1.3.6.1.4.1.2.6.42.4.99"
#define HWMCA_ACTIVATE_COMMAND_SUFFIX "1"
#define HWMCA_DEACTIVATE_COMMAND_SUFFIX "2"
#define HWMCA_SEND_OPSYS_COMMAND_SUFFIX "3"
#define HWMCA_RESETNORMAL_COMMAND_SUFFIX "4"
#define HWMCA_START_COMMAND_SUFFIX "5"
#define HWMCA_STOP_COMMAND_SUFFIX "6"
#define HWMCA_PSWRESTART_COMMAND_SUFFIX "7"
#define HWMCA_INITIALIZE_API_SUFFIX "8"
#define HWMCA_TERMINATE_API_SUFFIX "9"
#define HWMCA_LOAD_COMMAND_SUFFIX "10"
#define HWMCA_HW_MESSAGE_REFRESH_COMMAND_SUFFIX "11"
#define HWMCA_RESETCLEAR_COMMAND_SUFFIX "12"
#define HWMCA_HW_MESSAGE_DELETE_COMMAND_SUFFIX "13"
#define HWMCA_ACTIVATE_CBU_COMMAND SUFFIX "14"
#define HWMCA_UNDO_CBU_COMMAND SUFFIX "15"
#define HWMCA_IMPORT_PROFILE_COMMAND_SUFFIX "16"
#define HWMCA_EXPORT_PROFILE_COMMAND_SUFFIX "17"
#define HWMCA_RESERVE_COMMAND_SUFFIX "18"
#define HWMCA_EXTERNAL_INTERRUPT_COMMAND_SUFFIX "19"
#define HWMCA_SCSI_LOAD_COMMAND_SUFFIX "20"
#define HWMCA_SCSI_DUMP_COMMAND_SUFFIX "21"
#define HWMCA_SHUTDOWN_RESTART_COMMAND_SUFFIX "22"
#define HWMCA_ACTIVATE_OOCOD_COMMAND_SUFFIX "23"
#define HWMCA_UNDO_OOCOD_COMMAND_SUFFIX "24"
#define HWMCA_ADD_CAPACITY_COMMAND_SUFFIX "25"
#define HWMCA_REMOVE_CAPACITY_COMMAND_SUFFIX "26"
#define HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND_SUFFIX "27"
#define HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND_SUFFIX "28"
#define HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND_SUFFIX "29"
#define HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND_SUFFIX "30"
#define HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND_SUFFIX "31"

52 Application Programming Interfaces

/**/
/* Defines for the Console Message Event Types. */
/**/
#define HWMCA_HARDWARE_MESSAGE 1
#define HWMCA_OPSYS_MESSAGE 2

/**/
/* Defines for the CPC Managed Object Degraded Indicator */
/**/
#define HWMCA_NOT_DEGRADED 0x0000
#define HWMCA_DEGRADED_MEM 0x0001
#define HWMCA_DEGRADED_MBA 0x0002
#define HWMCA_DEGRADED_NODE 0x0004
#define HWMCA_DEGRADED_RING 0x0008
#define HWMCA_DEGRADED_CBU 0x0010
#define HWMCA_DEGRADED_MRU 0x0020
#define HWMCA_DEGRADED_AMBIENT 0x0040
#define HWMCA_DEGRADED_MRU_IML 0x0080

/**/
/* Defines for the Hardware Management Console Status Values. */
/**/
#define HWMCA_STATUS_OPERATING 0x00000001
#define HWMCA_STATUS_NOT_OPERATING 0x00000002
#define HWMCA_STATUS_NO_POWER 0x00000004
#define HWMCA_STATUS_NOT_ACTIVATED 0x00000008
#define HWMCA_STATUS_EXCEPTIONS 0x00000010
#define HWMCA_STATUS_STATUS_CHECK 0x00000020
#define HWMCA_STATUS_SERVICE 0x00000040
#define HWMCA_STATUS_LINKNOTACTIVE 0x00000080
#define HWMCA_STATUS_POWERSAVE 0x00000100
#define HWMCA_STATUS_SERIOUSALERT 0x00000200
#define HWMCA_STATUS_ALERT 0x00000400
#define HWMCA_STATUS_ENVALERT 0x00000800
#define HWMCA_STATUS_SERVICE_REQ 0x00001000
#define HWMCA_STATUS_DEGRADED 0x00002000
#define HWMCA_STATUS_STORAGE_EXCEEDED 0x01000000
#define HWMCA_STATUS_LOGOFF_TIMEOUT 0x02000000
#define HWMCA_STATUS_FORCED_SLEEP 0x04000000
#define HWMCA_STATUS_IMAGE_NOT_OPERATING 0x08000000
#define HWMCA_STATUS_IMAGE_NOT_ACTIVATED 0x10000000
#define HWMCA_STATUS_IMAGE_NOT_CAPABLE 0x20000000
#define HWMCA_STATUS_UNKNOWN 0x40000000

/**/
/* Defines for the Hardware Management Console IML Mode Values. */
/**/
#define HWMCA_IML_ESA390_MODE 1
#define HWMCA_IML_S370_MODE 2
#define HWMCA_IML_FM_MODE 6
#define HWMCA_IML_FMAE_MODE 7
#define HWMCA_IML_HM_MODE 8
#define HWMCA_IML_HMEA_MODE 9
#define HWMCA_IML_HMEX_MODE 10
#define HWMCA_IML_LPAR_MODE 11
#define HWMCA_IML_ESA390TPF_MODE 12
#define HWMCA_IML_CF_PROD_MODE 13
#define HWMCA_IML_FMEX_MODE 14
#define HWMCA_IML_HMAS_MODE 15
#define HWMCA_IML_LINUXO_MODE 16
#define HWMCA_IML_ZVM_MODE 18
#define HWMCA_IML_ZAWARE_MODE 20

Chapter 3. Console application APIs 53

/**/
/* Defines for the Hardware Management Console IPL Type Values. */
/**/
#define HWMCA_IPLTYPE_STANDARD 1
#define HWMCA_IPLTYPE_SCSI 2
#define HWMCA_IPLTYPE_SCSIDUMP 3

/**/
/* Defines for the Console Object Type Values. */
/**/
#define HWMCA_CPC_GROUP 1
#define HWMCA_CPC_IMAGE_GROUP 2
#define HWMCA_CPC_USER_GROUP 3
#define HWMCA_CPC_IMAGE_USER_GROUP 4
#define HWMCA_CPC_OBJECT 5
#define HWMCA_CPC_IMAGE_OBJECT 6
#define HWMCA_CF_OBJECT 7
#define HWMCA_ACT_PROFILE_RESET 8
#define HWMCA_ACT_PROFILE_IMAGE 9
#define HWMCA_ACT_PROFILE_LOAD 10
#define HWMCA_ACT_PROFILE_GROUP 11
#define HWMCA_CAPACITY_RECORD 12
#define HWMCA_VM_GROUP 13
#define HWMCA_VM_OBJECT 14

/**/
/* Defines for the Hardware Management Console Shutdown/Restart Types. */
/**/
#define HWMCA_RESTART_APPLICATION 1
#define HWMCA_RESTART_CONSOLE 2
#define HWMCA_SHUTDOWN_CONSOLE 3
#define HWMCA_RESTART_APPLICATION_ALTERNATE 4
#define HWMCA_RESTART_CONSOLE_ALTERNATE 5
#define HWMCA_SHUTDOWN_CONSOLE_ALTERNATE 6

/**/
/* Defines for the Hardware Management Console Ended Event Reasons. */
/**/
#define HWMCA_ENDED_USER 1
#define HWMCA_ENDED_AUTOMATION 2
#define HWMCA_ENDED_OTHER 3

/**/
/* Defines for the Hardware Management Console Processor Running Time types. */
/**/
#define HWMCA_DETERMINED_SYSTEM 0
#define HWMCA_DETERMINED_USER 1

/**/
/* Defines for the type of capacity record. */
/**/
#define HWMCA_CAPACITY_RECORD_TYPE_CBU 1
#define HWMCA_CAPACITY_RECORD_TYPE_OOCOD 2
#define HWMCA_CAPACITY_RECORD_TYPE_PLANNED_EVENT 3
#define HWMCA_CAPACITY_RECORD_TYPE_LOANER 4

54 Application Programming Interfaces

/**/
/* Defines for the activation status of a capacity record. */
/**/
#define HWMCA_CAPACITY_RECORD_STATUS_NOT_ACTIVATED 1
#define HWMCA_CAPACITY_RECORD_STATUS_REAL 2
#define HWMCA_CAPACITY_RECORD_STATUS_TEST 3
#define HWMCA_CAPACITY_RECORD_STATUS_CAN_BE_ACTIVATED 4

/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_CHANGE event. */
/**/
#define HWMCA_CAPACITY_FENCED_BOOK 0
#define HWMCA_CAPACITY_DEFECTIVE_PROCESSOR 1
#define HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE 2
#define HWMCA_CAPACITY_CONCURRENT_BOOK_ADD 3
#define HWMCA_CAPACITY_CHECK_STOP 4
#define HWMCA_CAPACITY_CHANGES_ALLOWED 5
#define HWMCA_CAPACITY_CHANGES_NOT_ALLOWED 6

/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_RECORD_CHANGE */
/* event. */
/**/
#define HWMCA_CAPACITY_RECORD_ADD 0
#define HWMCA_CAPACITY_RECORD_DELTA 1
#define HWMCA_CAPACITY_RECORD_DELETE 2
#define HWMCA_CAPACITY_RECORD_ACCOUNTING 3
#define HWMCA_CAPACITY_ACTIVATION_LEVEL 4
#define HWMCA_CAPACITY_PRIORITY_PENDING 5
#define HWMCA_CAPACITY_RECORD_OTHER 6

/**/
/* Defines for the Image Activation Profile Operating Mode Values. */
/**/
#define HWMCA_ESA390_OPERATING_MODE 1
#define HWMCA_ESA390TPF_OPERATING_MODE 2
#define HWMCA_CF_OPERATING_MODE 3
#define HWMCA_LINUX_OPERATING_MODE 4
#define HWMCA_FMEX_OPERATING_MODE 5
#define HWMCA_HMEX_OPERATING_MODE 6
#define HWMCA_HMAS_OPERATING_MODE 7
#define HWMCA_ZVM_OPERATING_MODE 8
#define HWMCA_ZAWARE_OPERATING_MODE 9

/**/
/*Defines for the Hardware Management Console Image Profile Clock Type Values.*/
/**/
#define HWMCA_CLOCK_TYPE_STANDARD 0
#define HWMCA_CLOCK_TYPE_LPAR 1

Chapter 3. Console application APIs 55

/**/
/* Defines for the type of capacity record. */
/**/
#define HWMCA_CAPACITY_RECORD_TYPE_CBU 1
#define HWMCA_CAPACITY_RECORD_TYPE_OOCOD 2
#define HWMCA_CAPACITY_RECORD_TYPE_PLANNED_EVENT 3
#define HWMCA_CAPACITY_RECORD_TYPE_LOANER 4

/**/
/* Defines for the activation status of a capacity record. */
/**/
#define HWMCA_CAPACITY_RECORD_STATUS_NOT_ACTIVATED 1
#define HWMCA_CAPACITY_RECORD_STATUS_REAL 2
#define HWMCA_CAPACITY_RECORD_STATUS_TEST 3
#define HWMCA_CAPACITY_RECORD_STATUS_CAN_BE_ACTIVATED 4

/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_CHANGE event. */
/**/
#define HWMCA_CAPACITY_FENCED_BOOK 0
#define HWMCA_CAPACITY_DEFECTIVE_PROCESSOR 1
#define HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE 2
#define HWMCA_CAPACITY_CONCURRENT_BOOK_ADD 3
#define HWMCA_CAPACITY_CHECK_STOP 4
#define HWMCA_CAPACITY_CHANGES_ALLOWED 5
#define HWMCA_CAPACITY_CHANGES_NOT_ALLOWED 6

/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_RECORD_CHANGE */
/* event. */
/**/
#define HWMCA_CAPACITY_RECORD_ADD 0
#define HWMCA_CAPACITY_RECORD_DELTA 1
#define HWMCA_CAPACITY_RECORD_DELETE 2
#define HWMCA_CAPACITY_RECORD_ACCOUNTING 3
#define HWMCA_CAPACITY_ACTIVATION_LEVEL 4
#define HWMCA_CAPACITY_PRIORITY_PENDING 5
#define HWMCA_CAPACITY_RECORD_OTHER 6

56 Application Programming Interfaces

Data exchange APIs SNMP target structure
(HWMCA_SNMP_TARGET_T)

/**/
/* Console SNMP Target Structure */
/**/
struct HWMCA_SNMP_TARGET_S {

PVOID pHost; /* A pointer to a null terminated */
/* string specifying the host name or */
/* internet address for the target */
/* Console. */
/* */

CHAR szCommunity[HWMCA_MAX_COMMUNITY_LEN]; /* Community name to be used */
/* for requests. */

UINT ulSecurityVersion; /* Security version used v2c or v3 */
CHAR szUsername[HWMCA_MAX_USERNAME_LEN]; /* Username to be used for v3 auth */

CHAR szPassword[HWMCA_MAX_USERNAME_LEN]; /* Password to be used for v3 auth */

UINT ulReserved; /* Reserved field. */
};

typedef struct HWMCA_SNMP_TARGET_S HWMCA_SNMP_TARGET_T;
typedef HWMCA_SNMP_TARGET_T * HWMCA_SNMP_TARGET_P;
#define HWMCA_SNMP_TARGET_SIZE sizeof(HWMCA_SNMP_TARGET_T)

Chapter 3. Console application APIs 57

|
|
|
|
|
|

Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)

/**/
/* Console Initialize Structure */
/**/
struct HWMCA_INITIALIZE_S {

PVOID pTarget; /* Pointer to data specifying the */
/* target Hardware Management Console */
/* for the request. */
/* */
/* For the SNMP APIs, this is an */
/* HWMCA_SNMP_TARGET_S structure. */
/* */

UINT ulEventMask; /* A mask specifying the event */
/* notifications that the application */
/* wants to register for. */
/* */
/* - HWMCA_EVENT_COMMAND_RESPONSE */
/* - HWMCA_EVENT_MESSAGE */
/* - HWMCA_EVENT_STATUS_CHANGE */
/* - HWMCA_EVENT_NAME_CHANGE */
/* - HWMCA_EVENT_ACTIVATE_PROF_CHANGE */
/* - HWMCA_EVENT_CREATED */
/* - HWMCA_EVENT_DESTROYED */
/* - HWMCA_EVENT_EXCEPTION_STATE */
/* - HWMCA_EVENT_ENDED */
/* - HWMCA_EVENT_HARDWARE_MESSAGE */
/* - HWMCA_EVENT_OPSYS_MESSAGE */
/* - HWMCA_EVENT_NO_REFRESH_MESSAGE */
/* - HWMCA_EVENT_STARTED */
/* - HWMCA_EVENT_HARDWARE_MESSAGE_DELETE*/
/* - HWMCA_DIRECT_INITIALIZE */
/* - HWMCA_FORCE_CLIENT_PATH */
/* - HWMCA_SNMP_VERSION_2 */
/* */

ULONG ulReserved; /* Must be zero. */
union {

struct {
INT iAgentSocket; /* Socket used to communicate with the */

/* SNMP agent on the target Console.
UINT ulInetAddr; /* Internet address for the SNMP agent.*/
UINT uiSecVersion;
CHAR szCommunity[HWMCA_MAX_COMMUNITY_LEN]; /* Community name to be */

/* used for requests. */
struct {

unsigned char bAuthEngineId[HWMCA_MAX_ID_LEN]; // Don’t know what the real max is supposed to be
UINT ulAuthEngineIdLength;
CHAR szUsername[HWMCA_MAX_USERNAME_LEN];
CHAR szPassword[HWMCA_MAX_USERNAME_LEN];
UINT ulAuthEngineBoots;
UINT ulAuthEngineTime;
UINT ulMsgId;
unsigned char bPrivateKey[16];
UINT uiSalt;

} v3;
} snmp;

} protocol;
};

typedef struct HWMCA_INITIALIZE_S HWMCA_INITIALIZE_T;
typedef HWMCA_INITIALIZE_T * HWMCA_INITIALIZE_P;
#define HWMCA_INITIALIZE_SIZE sizeof(HWMCA_INITIALIZE_T)

58 Application Programming Interfaces

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Data exchange APIs datatype structure (HWMCA_DATATYPE_T)

Function prototypes

/**/
/* Console Data Type Structure */
/**/
struct HWMCA_DATATYPE_S {

UCHAR ucType; /* Type of the data: */
/* - HWMCA_TYPE_SEQUENCE */
/* - HWMCA_TYPE_INTEGER */
/* - HWMCA_TYPE_OCTETSTRING */
/* - HWMCA_TYPE_NULL */
/* - HWMCA_TYPE_OBJECTID */
/* - HWMCA_TYPE_IPADDRESS */

ULONG ulLength; /* Length of the data. */
PVOID pData; /* Pointer to the data itself. */
struct HWMCA_DATATYPE_S *pNext; /* Pointer to next data type structure */

};

typedef struct HWMCA_DATATYPE_S HWMCA_DATATYPE_T;
typedef HWMCA_DATATYPE_T * HWMCA_DATATYPE_P;
#define HWMCA_DATATYPE_SIZE sizeof(HWMCA_DATATYPE_T)
/**/
/* Hardware Management Console Event Qualifier Structure */
/**/
struct HWMCA_EVENT_QUALIFIER_S {

unsigned int ulEventMask; /* Event mask for qualifier */
unsigned int ulType; /* Qualifier type */
union {

char szName[256]; /* Image name for OS msgs events */
char cReserved[256]; /* Reserved space */

} type; /* union of qualifier data */
struct HWMCA_EVENT_QUALIFIER_S *pNext;/* Pointer to next qualifier struct */

};
typedef struct HWMCA_EVENT_QUALIFIER_S HWMCA_EVENT_QUALIFIER_T;
typedef HWMCA_EVENT_QUALIFIER_T * HWMCA_EVENT_QUALIFIER_P;
#define HWMCA_EVENT_QUALIFIER_SIZE sizeof(HWMCA_EVENT_QUALIFIER_T)
#define HWMCA_QUALIFIER_TYPE_NAME 0x00000001

/**/
/* Console Data Exchange Function Prototypes */
/**/
extern ULONG EXPENTRY HwmcaInitialize(

HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */
/* structure. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

extern ULONG EXPENTRY HwmcaGet(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PSZ, /* Pointer to null terminated object ID */

/* string. */
PVOID, /* Pointer to an output buffer for the */

/* returned data. */
ULONG, /* Size of the output buffer. */
PULONG, /* Pointer to an area where the number of */

/* total bytes needed for this Get request */
/* is returned. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

Chapter 3. Console application APIs 59

|
|

extern ULONG EXPENTRY HwmcaGetNext(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PSZ, /* Pointer to null terminated object ID */

/* string. */
PVOID, /* Pointer to an output buffer for the */

/* returned data. */
ULONG, /* Size of the output buffer. */
PULONG, /* Pointer to an area where the number of */

/* total bytes needed for this Get request */
/* is returned. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

extern ULONG EXPORTTYPE HwmcaGetBulk(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
HWMCA_DATATYPE_P, /* Pointer to a linked list of */

/* HWMCA_DATATYPE_T structures used to */
/* specify the object IDs to use in the */
/* GetBulk request. */

UINT, /* Count of non-repeaters for the request. */
UINT, /* Maximum repititions for the request. */
PVOID, /* Pointer to an output buffer for the */

/* returned data. */
ULONG, /* Size of the output buffer. */
PULONG, /* Pointer to an area where the number of */

/* total bytes needed for this Get request */
/* is returned. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

60 Application Programming Interfaces

extern ULONG EXPENTRY HwmcaSet(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PSZ, /* Pointer to null terminated object ID */

/* string. */
HWMCA_DATATYPE_P, /* Pointer to a linked list of */

/* HWMCA_DATATYPE_T structures used to */
/* represent the data. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

extern ULONG EXPENTRY HwmcaWaitEvent(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PVOID, /* Pointer to an output buffer for the */

/* returned data. */
ULONG, /* Size of the output buffer. */
PULONG, /* Pointer to an area where the number of */

/* total bytes needed for this Get request */
/* is returned. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

extern ULONG EXPENTRY HwmcaTerminate(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
ULONG); /* Time to wait for the next event */

/* notification (in milliseconds). */

extern ULONG EXPENTRY HwmcaCommand(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PSZ, /* Pointer to null terminated object ID */

/* string that the command target. */
PSZ, /* Pointer to null terminated object ID */

/* string that command identifier. */
HWMCA_DATATYPE_P, /* Pointer to a linked list of */

/* HWMCA_DATATYPE_T structures used to */
/* represent the argument data. */

ULONG); /* Time to wait for the next event */
/* notification (in milliseconds). */

extern ULONG EXPORTTYPE HwmcaCorrelatedCommand(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */

/* structure. */
PSZ, /* Pointer to null terminated object ID */

/* string that the command target. */
PSZ, /* Pointer to null terminated object ID */

/* string that command identifier. */
HWMCA_DATATYPE_P, /* Pointer to a linked list of */

/* HWMCA_DATATYPE_T structures used to */
/* represent the argument data. */

ULONG, /* Time to wait for the next event */
/* notification (in milliseconds). */

void *, /* Pointer to correlator data. */
unsigned int); /* Size of correlator data. */

extern ULONG EXPORTTYPE HwmcaRegister(
HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization */
UINT, /* New event mask to be used */
HWMCA_EVENT_QUALIFIER_P, /* New event qualifiers to be used */
ULONG); /* Time to wait for the next event */

/* notification (in milliseconds). */

Chapter 3. Console application APIs 61

|

Data exchange APIs and commands API example
Refer to the following pages for some example code using the Console Data Exchange APIs and
Commands API. A copy of this code can be found on Resource Link at http://www.ibm.com/servers/
resourcelink. Click Services, and then Click API.

For more information about the parameters required for this example, simply execute the program with
no arguments. This will print out help information to the screen. Some sample invocations for this
example program are:
v HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.0.23.0

This will perform a get operation for the Group Contents attribute of the Console object.
v HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.1.23.0

Performs a get operation for the Group Contents attribute of the Defined CPC Group object.
v HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.2.23.0

Performs a get operation for the Group Contents attribute of the CPC Images Group object.
v HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.1.0.10.0.3362806951

Performs a get operation for the Status attribute of the Defined CPC object named CPC01.

extern ULONG EXPENTRY HwmcaBuildId(
PSZ, /* Pointer to a buffer where the built object*/

/* identifier string is to be placed. */
PSZ, /* Pointer to the prefix string to be used */

/* for the object identifier to be built. */
/* - HWMCA_CONSOLE_ID */
/* - HWMCA_CFG_CPC_GROUP_ID */
/* - HWMCA_CFG_CPC_ID */
/* - HWMCA_CPC_IMAGE_GROUP_ID */
/* - HWMCA_CPC_IMAGE_ID */
/* - HWMCA_GROUPS_GROUP_ID */
/* - HWMCA_COMMAND_PREFIX */
/* - HWMCA_ACT_RESET_OBJECT_ID */
/* - HWMCA_ACT_IMAGE_OBJECT_ID */
/* - HWMCA_ACT_LOAD_OBJECT_ID */

PSZ, /* Pointer to the attribute suffix string to */
/* be used for the object identifier to be */
/* build. This can be specified as NULL, */
/* when building an ID for an object itself, */
/* as opposed to an attribute object ID. */

PSZ, /* Pointer to the Group name to be used for */
/* building the object identifier. This can */
/* be specified as NULL, when building an ID */
/* for a predefined group or an object from */
/* a predefined group. */

PSZ); /* Pointer to the Object name to be used for */
/* building the object identifier. This can */
/* be specified as NULL, when building an ID */
/* for a group object. */

extern ULONG EXPENTRY HwmcaBuildAttributeId(
PSZ, /* Pointer to a buffer where the built object*/

/* identifier string for the attribute is to */
/* be placed. */

PSZ, /* Pointer to the object identifier for the */
/* object for which the attribute identifier */
/* is to be built. */

PSZ); /* Pointer to the attribute suffix string to */
/* be used for the attribute identifier to be*/
/* build. */

62 Application Programming Interfaces

v HWMCATST 4 9.130.1.1 1.3.6.1.4.1.2.6.42.1.0.3362806951 1.3.6.1.4.1.2.6.42.4.1
Sends an Activate command request to the Defined CPC object named CPC01.

v HWMCATST 5 9.130.1.1 255 -1
Waits forever for all types of event notifications.

/*********************** Defines ***********************************/
#define INCL_DOS

#define HWMCAAPI_TIMEOUT 30000
#define COMMUNITY "public"

/*********************** Include Files ***********************************/
#include <os2.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include "hwmcaapi.h"

/*********************** Function Prototypes *****************************/
VOID parse_and_print_get(HWMCA_DATATYPE_P);
VOID parse_and_print_get_group_contents(HWMCA_DATATYPE_P);

/*********************** Main **/
void main(argc, argv, envp)

int argc;
char *argv[];
char *envp[];

{
APIRET usRc; /* Local return code from API calls */
ULONG ulLength; /* Number of bytes passed to an API call */
ULONG ulBytesNeeded; /* Number of bytes needed for an API call */
USHORT usfContinue; /* Local continue processing flag */
HWMCA_DATATYPE_T tHwmcaDataType; /* HWMCA DataType structure */
HWMCA_DATATYPE_P pHwmcaDataType; /* Ptr to a HWMCA DataType structure */
HWMCA_DATATYPE_T aHwmcaDataType[10]; /* HWMCA DataType structure */
ULONG aulCmdData[10]; /* array of command integer data */
HWMCA_INITIALIZE_T tHwmcaInitialize; /* Structure for HwmcaInitialize API call */
HWMCA_SNMP_TARGET_T tHwmcaSnmpTarget; /* Target structure for HwmcaInitialize call*/
INT i, j; /* loop variables */
CHAR cEventBuf[HWMCA_MAX_EVENT_BUF_SIZE];
CHAR szOID[HWMCA_MAX_ID_LEN];
PSZ pszAttribute, pszGroupName, pszObjectName;

usfContinue = TRUE;
memset(&tHwmcaInitialize,’\0’,HWMCA_INITIALIZE_SIZE);
if (argc >= 4) { /* Proper number of initial arguments passed */

switch (atoi(argv[1])) {
case 1: /* Get request */

break;
case 2: /* Get-Next request */

break;
case 3: /* Set request */

if (argc != 6) { /* Proper number of arguments passed */
usfContinue = FALSE;

} /* endif */
break;

Chapter 3. Console application APIs 63

case 4: /* Command request */
if (argc < 5) { /* Proper number of arguments passed */

usfContinue = FALSE;
} /* endif */
break;

case 5: /* WaitEvent request */
if (argc < 5) { /* Proper number of arguments passed */

usfContinue = FALSE;
} else {

tHwmcaInitialize.ulEventMask = (ULONG)atol(argv[3]);
} /* endif */
break;

case 6: /* BuildId request */
break;

case 7: /* BuildAttributeId request */
if (argc < 5) { /* Proper number of arguments passed */

usfContinue = FALSE;
} /* endif */
break;

default:
usfContinue = FALSE;
break;

} /* endswitch */
if (usfContinue) {

tHwmcaInitialize.pTarget = &tHwmcaSnmpTarget;
tHwmcaSnmpTarget.pHost = argv[2];
strcpy(tHwmcaSnmpTarget.szCommunity,COMMUNITY);
usRc = HwmcaInitialize(&tHwmcaInitialize,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Initialize with HWMCA API server successful */

printf("HwmcaInitialize call was successful\n");
printf("HwmcaInitialize target host = %s\n",

tHwmcaSnmpTarget.pHost);
printf("HwmcaInitialize target community name = %s\n",

tHwmcaInitialize.protocol.snmp.szCommunity);
printf("HwmcaInitialize socket = %ld\n",

tHwmcaInitialize.protocol.snmp.iAgentSocket);
printf("HwmcaInitialize agent Internet address = %x\n",

tHwmcaInitialize.protocol.snmp.ulInetAddr);
switch ((atoi(argv[1]))) {

64 Application Programming Interfaces

case 1: /* Get request */
ulLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
memset(&tHwmcaDataType,’\0’,HWMCA_DATATYPE_SIZE);
usRc = HwmcaGet(&tHwmcaInitialize,argv[3],&tHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Data returned from HwmcaGet */

/* Need a larger buffer for the Get request */
if (ulBytesNeeded > ulLength) {

pHwmcaDataType = (HWMCA_DATATYPE_P)(malloc(ulBytesNeeded));
if (pHwmcaDataType) {

memset(pHwmcaDataType,’\0’,ulBytesNeeded);
ulLength = ulBytesNeeded;
usRc = HwmcaGet(&tHwmcaInitialize,argv[3],pHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Get request successful */

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(pHwmcaDataType);
} else {

parse_and_print_get(pHwmcaDataType);
} /* endif */
free(pHwmcaDataType);

} else {
printf("Error in HwmcaGet call return code = %ld\n",usRc);

} /* endif */
} else {

printf("Error in allocating %ld bytes for an HwmcaGet call",
ulBytesNeeded);

} /* endif */
} else {

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(&tHwmcaDataType);
} else {

parse_and_print_get(&tHwmcaDataType);
} /* endif */

} /* endif */
} else {

printf("Error in HwmcaGet call return code = %ld\n",usRc);
} /* endif */
break;

Chapter 3. Console application APIs 65

case 2: /* Get-Next request */
ulLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
memset(&tHwmcaDataType,’\0’,HWMCA_DATATYPE_SIZE);
usRc = HwmcaGetNext(&tHwmcaInitialize,argv[3],&tHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Data returned from HwmcaGetNext */

/* Need a larger buffer for the Get request */
if (ulBytesNeeded > ulLength) {

pHwmcaDataType = (HWMCA_DATATYPE_P)(malloc(ulBytesNeeded));
if (pHwmcaDataType) {

memset(pHwmcaDataType,’\0’,ulBytesNeeded);
ulLength = ulBytesNeeded;
usRc = HwmcaGetNext(&tHwmcaInitialize,argv[3],

pHwmcaDataType,ulLength,
&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);

if (!usRc) { /* Get request successful */
/* Check if it is a Group contents Get-Next */
if ((pHwmcaDataType->ucType == HWMCA_TYPE_OBJECTID) &&

(strstr(pHwmcaDataType->pData,HWMCA_GROUP_CONTENTS_SUFFIX))) {
parse_and_print_get_group_contents(pHwmcaDataType);

} else {
parse_and_print_get(pHwmcaDataType);

} /* endif */
free(pHwmcaDataType);

} else {
printf("Error in HwmcaGetNext call return code = %ld\n",usRc);

} /* endif */
} else {

printf("Error in allocating %ld bytes for an HwmcaGet call",
ulBytesNeeded);

} /* endif */
} else {

/* Check if it is a Group contents Get-Next */
if ((pHwmcaDataType->ucType == HWMCA_TYPE_OBJECTID) &&

(strstr(pHwmcaDataType->pData,HWMCA_GROUP_CONTENTS_SUFFIX))) {
parse_and_print_get_group_contents(&tHwmcaDataType);

} else {
parse_and_print_get(&tHwmcaDataType);

} /* endif */
} /* endif */

} else {
printf("Error in HwmcaGetNext call return code = %ld\n",usRc);

} /* endif */
break;

66 Application Programming Interfaces

case 3: /* Set request */
ulLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
memset(&tHwmcaDataType,’\0’,HWMCA_DATATYPE_SIZE);
tHwmcaDataType.ucType = (UCHAR)atoi(argv[4]);
if (tHwmcaDataType.ucType == HWMCA_TYPE_OCTETSTRING) {

tHwmcaDataType.ulLength = strlen(argv[5])+1;
tHwmcaDataType.pData = argv[5];

} else {
tHwmcaDataType.ulLength = sizeof(ULONG);
ulBytesNeeded = atol(argv[5]);
tHwmcaDataType.pData = &ulBytesNeeded;

} /* endif */
usRc = HwmcaSet(&tHwmcaInitialize,argv[3],&tHwmcaDataType,(ULONG)HWMCAAPI_TIMEOUT);
if (usRc) {

printf("Error in HwmcaSet call return code = %ld\n",usRc);
} /* endif */
break;

case 4: /* Command request */
for (i=5, j=0; (((i+2) <= argc) && (j < 10)); i+=2, j++) {

memset(&ahWmcaDataType[j],’\0’,HWMCA_DATATYPE_SIZE);
aHwmcaDataType[j].pNext = &(aHwmcaDataType[j+1]);
aHwmcaDataType[j].ucType = (UCHAR)atoi(argv[i]);
switch (aHwmcaDataType[j].ucType) {

case HWMCA_TYPE_OCTETSTRING:
aHwmcaDataType[j].ulLength = strlen(argv[i+1])+1;
aHwmcaDataType[j].pData = argv[i+1];
break;

case HWMCA_TYPE_NULL:
aHwmcaDataType[j].ulLength = 0;
aHwmcaDataType[j].pData = (PVOID)NULL;
break;

default:
aHwmcaDataType[j].ulLength = sizeof(ULONG);
aulCmdData[j] = atol(argv[i+1]);
aHwmcaDataType[j].pData = &aulCmdData[j];
break;

} /* endswitch */
} /* endfor */
if (j == 0) {

pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
} else {

aHwmcaDataType[j-1].pNext = (HWMCA_DATATYPE_P)NULL;
pHwmcaDataType = aHwmcaDataType;

} /* endif */
usRc = HwmcaCommand(&tHwmcaInitialize,argv[3],argv[4],

pHwmcaDataType,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) {

printf("HwmcaCommand request was successful; waiting for the command response event.\n");
while (!usRc) {

usRc = HwmcaWaitEvent(&tHwmcaInitialize,cEventBuf,sizeof(cEventBuf),
&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);

if (!usRc) { /* WaitEvent request successful */
if (ulBytesNeeded <= sizeof(cEventBuf)) {

parse_and_print_get((HWMCA_DATATYPE_P)cEventBuf);
} else {

printf("Event buffer not large enough!\n");
} /* endif */

Chapter 3. Console application APIs 67

} else {
printf("Error in HwmcaWaitEvent call return code = %ld\n",usRc);

} /* endif */
} /* endwhile */

} else {
printf("Error in HwmcaCommand call return code = %ld\n",usRc);

} /* endif */
break;

case 5: /* WaitEvent request */
usRc = 0;
while ((!usRc) && (argc >= 5)) {

usRc = HwmcaWaitEvent(&tHwmcaInitialize,cEventBuf,sizeof(cEventBuf),
&ulBytesNeeded,(ULONG)atol(argv[4]));

if (!usRc) { /* WaitEvent request successful */
if (ulBytesNeeded <= sizeof(cEventBuf)) {

parse_and_print_get((HWMCA_DATATYPE_P)cEventBuf);
} else {

printf("Event buffer not large enough!\n");
} /* endif */

} else {
printf("Error in HwmcaWaitEvent call return code = %ld\n",usRc);

} /* endif */
} /* endwhile */
break;

case 6: /* Build Id request */
pszAttribute = pszGroupName = pszObjectName = (PSZ)NULL;
switch (argc) {

case 7:
if (strlen(argv[6])) {

pszObjectName = argv[6];
} /* endif */

case 6:
if (strlen(argv[5])) {

pszGroupName = argv[5];
} /* endif */

case 5:
if (strlen(argv[4])) {

pszAttribute = argv[4];
} /* endif */
break;

default:
break;

} /* endswitch */
usRc = HwmcaBuildId(szOID,argv[3],pszAttribute,pszGroupName,pszObjectName);
if (!usRc) {

printf("HwmcaBuildId build object identifier %s.\n",szOID);
ulLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
memset(&tHwmcaDataType,’\0’,HWMCA_DATATYPE_SIZE);
usRc = HwmcaGet(&tHwmcaInitialize,szOID,&tHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Data returned from HwmcaGet */

68 Application Programming Interfaces

/* Need a larger buffer for the Get request */
if (ulBytesNeeded > ulLength) {

pHwmcaDataType = (HWMCA_DATATYPE_P)(malloc(ulBytesNeeded));
if (pHwmcaDataType) {

memset(pHwmcaDataType,’\0’,ulBytesNeeded);
ulLength = ulBytesNeeded;
usRc = HwmcaGet(&tHwmcaInitialize,szOID,pHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Get request successful */

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(pHwmcaDataType);
} else {

parse_and_print_get(pHwmcaDataType);
} /* endif */
free(pHwmcaDataType);

} else {
printf("Error in HwmcaGet call return code = %ld\n",usRc);

} /* endif */
} else {

printf("Error in allocating %ld bytes for an HwmcaGet call",
ulBytesNeeded);

} /* endif */
} else {

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(&tHwmcaDataType);
} else {

parse_and_print_get(&tHwmcaDataType);
} /* endif */

} /* endif */
} else {

printf("Error in HwmcaGet call return code = %ld\n",usRc);
} /* endif */

} else {
printf("Error in HwmcaBuildId call return code = %ld\n",usRc);

} /* endif */
break;

Chapter 3. Console application APIs 69

case 7: /* Build Attribute Id request */
usRc = HwmcaBuildAttributeId(szOID,argv[3],argv[4]);
if (!usRc) {

printf("HwmcaBuildAttributeId build object identifier %s.\n",szOID);
ulLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
memset(&tHwmcaDataType,’\0’,HWMCA_DATATYPE_SIZE);
usRc = HwmcaGet(&tHwmcaInitialize,szOID,&tHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Data returned from HwmcaGet */

/* Need a larger buffer for the Get request */
if (ulBytesNeeded > ulLength) {

pHwmcaDataType = (HWMCA_DATATYPE_P)(malloc(ulBytesNeeded));
if (pHwmcaDataType) {

memset(pHwmcaDataType,’\0’,ulBytesNeeded);
ulLength = ulBytesNeeded;
usRc = HwmcaGet(&tHwmcaInitialize,szOID,pHwmcaDataType,

ulLength,&ulBytesNeeded,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Get request successful */

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(pHwmcaDataType);
} else {

parse_and_print_get(pHwmcaDataType);
} /* endif */
free(pHwmcaDataType);

} else {
printf("Error in HwmcaGet call return code = %ld\n",usRc);

} /* endif */
} else {

printf("Error in allocating %ld bytes for an HwmcaGet call",
ulBytesNeeded);

} /* endif */
} else {

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {

parse_and_print_get_group_contents(&tHwmcaDataType);
} else {

parse_and_print_get(&tHwmcaDataType);
} /* endif */

} /* endif */
} else {

printf("Error in HwmcaGet call return code = %ld\n",usRc);
} /* endif */

} else {
printf("Error in HwmcaBuildId call return code = %ld\n",usRc);

} /* endif */
break;

70 Application Programming Interfaces

default:
break;

} /* endswitch */
usRc = HwmcaTerminate(&tHwmcaInitialize,(ULONG)HWMCAAPI_TIMEOUT);
if (!usRc) { /* Terminate with HWMCA API server successful */

printf("HwmcaTerminate socket = %ld\n",
tHwmcaInitialize.protocol.snmp.iAgentSocket);

printf("HwmcaTerminate agent Internet address = %x\n",
tHwmcaInitialize.protocol.snmp.ulInetAddr);

} else {
printf("Error in HwmcaTerminate call return code = %ld\n",usRc);

} /* endif */
} else {

printf("Error in HwmcaInitialize call return code = %ld\n",usRc);
} /* endif */

} /* endif */
} else {

usfContinue = FALSE;
} /* endif */
if (!usfContinue) {

Chapter 3. Console application APIs 71

printf("**\n");
printf("*** Program requires the following parameters: ***\n");
printf("*** ***\n");
printf("*** Type of request: (use 1 - 7 as the parameter ***\n");
printf("*** for the type of request) ***\n");
printf("*** 1 - Get request ***\n");
printf("*** 2 - Get-Next request ***\n");
printf("*** 3 - Set request ***\n");
printf("*** 4 - Command request ***\n");
printf("*** 5 - Wait Event request ***\n");
printf("*** 6 - Build Id request ***\n");
printf("*** 7 - Build Attribute Id request ***\n");
printf("*** ***\n");
printf("*** Internet address of the Console Application ***\n");
printf("*** 9.130.1.133 ***\n");
printf("*** ***\n");
printf("*** Request specific parameters: ***\n");
printf("*** For a Get or Get-Next request: ***\n");
printf("*** Object ID (1.3.6.1.etc) ***\n");
printf("*** ***\n");
printf("*** For a Set request: ***\n");
printf("*** Object ID (1.3.6.1.etc) ***\n");
printf("*** Set data type (2-integer,4-string,etc) ***\n");
printf("*** Set data ***\n");
printf("*** ***\n");
printf("*** For a Command request: ***\n");
printf("*** Target Object ID (1.3.6.1.etc) ***\n");
printf("*** Command Object ID (1.3.6.1.etc) ***\n");
printf("*** ***\n");
printf("*** For a Wait Event request: ***\n");
printf("*** Event mask ***\n");
printf("*** Timeout value in milliseconds ***\n");
printf("*** (-1 --> forever) ***\n");
printf("*** ***\n");
printf("*** For a Build Id request: ***\n");
printf("*** Object ID Prefix (1.3.6.1.etc) ***\n");
printf("*** Attribute suffix (optional) ***\n");
printf("*** Group name (optional) ***\n");
printf("*** Object name (optional) ***\n");
printf("*** ***\n");
printf("*** For a Build Attribute Id request: ***\n");
printf("*** Object ID (1.3.6.1.etc) ***\n");
printf("*** Attribute suffix ***\n");
printf("**\n");

} /* endif */

} /* end main */

72 Application Programming Interfaces

VOID parse_and_print_get(HWMCA_DATATYPE_P pHwmcaDataType)
{

HWMCA_DATATYPE_P pLoopHwmcaDataType;

pLoopHwmcaDataType = pHwmcaDataType;
while (pLoopHwmcaDataType) {

switch (pLoopHwmcaDataType->ucType) {
case HWMCA_TYPE_SEQUENCE:

break;
case HWMCA_TYPE_INTEGER:

printf("HWMCA_TYPE_INTEGER returned size = %d and pData = %d\n",
pLoopHwmcaDataType->ulLength,*((PINT)(pLoopHwmcaDataType->pData)));

break;
case HWMCA_TYPE_OCTETSTRING:

printf("HWMCA_TYPE_OCTETSTRING returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ulLength,pLoopHwmcaDataType->pData);

break;
case HWMCA_TYPE_NULL:

printf("HWMCA_TYPE_NULL returned size = %d\n",pLoopHwmcaDataType->ulLength);
break;

case HWMCA_TYPE_OBJECTID:
printf("HWMCA_TYPE_OBJECTID returned size = %d and pData = %s\n",

pLoopHwmcaDataType->ulLength,pLoopHwmcaDataType->pData);
break;

case HWMCA_TYPE_IPADDRESS:
printf("HWMCA_TYPE_IPADDRESS returned size = %d and pData = %x\n",

pLoopHwmcaDataType->ulLength,*((PINT)(pLoopHwmcaDataType->pData)));
break;

default:
printf("UNKNOWN Data type returned = %d\n",pLoopHwmcaDataType->ucType);
break;

} /* endswitch */
pLoopHwmcaDataType = pLoopHwmcaDataType->pNext;

} /* endwhile */

} /* end of parse_and_print_get */

Chapter 3. Console application APIs 73

VOID parse_and_print_get_group_contents(HWMCA_DATATYPE_P pHwmcaDataType)
{

PSZ pszGroupContents;
PUCHAR pBlank;
HWMCA_DATATYPE_P pLoopHwmcaDataType;

pLoopHwmcaDataType = pHwmcaDataType;
while (pLoopHwmcaDataType) {

switch (pLoopHwmcaDataType->ucType) {
case HWMCA_TYPE_OBJECTID:

printf("HWMCA_TYPE_OBJECTID returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ulLength,pLoopHwmcaDataType->pData);

break;
case HWMCA_TYPE_OCTETSTRING:

printf("HWMCA_TYPE_OCTETSTRING returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ulLength,pLoopHwmcaDataType->pData);

pszGroupContents = (PSZ)pLoopHwmcaDataType->pData;
pBlank = pszGroupContents;
pBlank = strchr(pBlank,’ ’);
while (pBlank) {

*pBlank = ’\0’;
printf("Group contents Object ID = %s\n",pszGroupContents);
pBlank++;
pszGroupContents = pBlank;
pBlank = strchr(pBlank,’ ’);

} /* endwhile */
printf("Group contents Object ID = %s\n",pszGroupContents);
break;

case HWMCA_TYPE_NULL:
printf("HWMCA_TYPE_NULL returned size = %d\n",pLoopHwmcaDataType->ulLength);
break;

default:
printf("UNKNOWN Data type returned = %d\n",pLoopHwmcaDataType->ucType);
break;

} /* endswitch */
pLoopHwmcaDataType = pLoopHwmcaDataType->pNext;

} /* endwhile */

} /* end of parse_and_print_get_group_contents */

74 Application Programming Interfaces

Chapter 4. Console application managed objects

This chapter contains definitions of the objects the Console application manages. Each object contains the
following:
v Object Type

v Object Name Bindings: Shows the name of the base object that is used in the Management Commands
API.

v Object Attributes: Describes each attribute an object contains and the operations supported against
that attribute. The operations supported are:

Get: Retrieve the current attribute value of an object
Set: The attribute value of an object

It also shows the attribute name of an object (SNMP MIB name) that is used in the management APIs.

Important information about object attributes: Unless otherwise specified in Appendix E, “Object
Attribute Availability,” on page 215, it can be assumed that each object attribute described in this
chapter is valid for any level of object. For any object attribute that is not valid for all levels, Table 1 on
page 215 defines the level of objects required for the attribute.

v Object Relationship: Describes any pertinent relationships the object contains with other objects.
v Commands that can be performed on that object: Describes each command that is valid for the object

and also shows the name of the command that is used in the Management Commands API when
requesting a command to be performed on the object. For the SNMP version, the command name is
called the SNMP MIB Name.

v Emitted object asynchronous notifications: Describes the significant notifications an object will emit to
a registered application.

Console application object identifier conventions
All the objects managed by the Console application follow the same object identifier naming scheme. The
naming scheme used by the Console breaks the object identifiers into four distinct portions:

prefix.attribute.group.object

The meanings and options for each of these portions are described in the following pages:

prefix
This portion of the object identifier must be one of the following:

1.3.6.1.4.1.2.6.42.0
An attribute of the Console object or the Console object itself.

1.3.6.1.4.1.2.6.42.1
An attribute of the Defined CPCs group object or the Defined CPCs group object itself.

1.3.6.1.4.1.2.6.42.1.0
An attribute of a Defined CPC object or a Defined CPC object itself.

1.3.6.1.4.1.2.6.42.2
An attribute of the CPC Images group object or the CPC Images group object itself.

1.3.6.1.4.1.2.6.42.2.0
An attribute of a CPC Image object or a CPC Image object itself.

© Copyright IBM Corp. 2000, 2013 75

1.3.6.1.4.1.2.6.42.3
An attribute of a user-defined group object or a user-defined group object itself.

1.3.6.1.4.1.2.6.42.3.0
An attribute of an object contained within a user-defined group object or an object contained within a
user-defined group object itself.

1.3.6.1.4.1.2.6.42.4
A Console application command object.

1.3.6.1.4.1.2.6.42.5
An attribute of a Reset Activation Profile or a Reset Activation Profile object itself.

1.3.6.1.4.1.2.6.42.6
An attribute of an Image Activation Profile or an Image Activation Profile object itself.

1.3.6.1.4.1.2.6.42.7
An attribute of a Load Activation Profile or a Load Activation Profile object itself.

1.3.6.1.4.1.2.6.42.8
An attribute of a Group Activation Profile or a Group Activation Profile object itself.

1.3.6.1.4.1.2.6.42.9.0
An attribute of a Capacity Record object or a Capacity Record object itself.

1.3.6.1.4.1.2.6.42.10
An attribute of the Managed z/VM® Virtual Machines group object or the Managed z/VM Virtual
Machines group object itself.

1.3.6.1.4.1.2.6.42.10.0
An attribute of a z/VM Virtual Machine object or a z/VM Virtual Machine object itself.

attribute
This portion of the object identifier is used when specifying an object identifier for an attribute of an
object. It is optional and when not specified results in an object identifier for the object itself.

group
This portion of the object identifier is used to uniquely specify which user-defined group this object
identifier pertains to. It is optional and should only be used for the following object identifiers:
v User-defined groups
v User-defined group attributes
v Objects contained within user-defined groups
v Attributes of objects contained within user-defined groups
v Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects (in this case the

group value is used to identify the CPC object that the activation profile pertains to)
v Attributes of Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects (in

this case the group value is used to identify the CPC object that the activation profile attribute pertains
to).

This value is generated using the name attribute of the group object.

object
This portion of the object identifier is used to uniquely specify which object within a group this object
identifier pertains to. It is optional and should only be used for the following object identifiers:

76 Application Programming Interfaces

v Objects contained within a group
v Attributes of objects contained within a group
v Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects
v Attributes of Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects.

This value is generated using the name attribute of the object.

Console application object

Console application name bindings

Console object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.x.x

Where x.x equals the attribute identifier for the object.

Console attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.1.0

SNA address
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned contains the

SNA address in the form NetId.Name)
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.16.0

Group contents
Get: Null terminated collection of blank separated object identifier strings.
v Data type(s) returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.*
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.23.0

Version
Get: The version number for the console.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.151.0

Internet Protocol (IP) addresses
Get: A null terminated list of blank separated IP addresses being used by the console.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.161.0

Engineering Change (EC)/Microcode Level (MCL)
Get: An XML string that describes the EC and MCL levels for the console.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

Chapter 4. Console application managed objects 77

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.162.0

Console application commands

Hardware message refresh
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.11 (HWMCA_HW_MESSAGE_REFRESH_COMMAND)

Hardware message delete
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.13 (HWMCA_HW_MESSAGE_DELETE_COMMAND)

Shutdown/Restart
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.22 (HWMCA_SHUTDOWN_RESTART_COMMAND)

Console application notifications

Security log event (HWMCA_EVENT_SECURITY_EVENT)
v An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the security log.
v An HWMCA_TYPE_OCTETSTRING that specifies the text of the security log.

Console application started (HWMCA_EVENT_STARTED)
This event has no additional data.

Console application ended (HWMCA_EVENT_ENDED)
Used to notify the application that the Console application is ending.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies the reason for the event. The possible values are:

v HWMCA_ENDED_USER - the event was initiated by a user,
v HWMCA_ENDED_AUTOMATION - the event was initiated by automation, or
v HWMCA_ENDED_OTHER - the event was initiated by the Console application itself (for example,

recovery action, change management, etc.)
2. An HWMCA_TYPE_OCTETSTRING that specifies the name of the Console application component

that caused the event.
3. An HWMCA_TYPE_INTEGER that specifies the shutdown type for the event. The possible values are:

v HWMCA_SHUTDOWN_CONSOLE - the console has been shut down and will take manual
intervention to be restarted,

v HWMCA_RESTART_APPLICATION - the console application has been stopped and will
automatically be restarted, or

v HWMCA_RESTART_CONSOLE - the console has been stopped and will automatically be restarted.
4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Message (HWMCA_EVENT_MESSAGE)
v An HWMCA_TYPE_INTEGER that specifies that the message is a Console or Optical Network

message (HWMCA_HARDWARE_MESSAGE).
v An HWMCA_TYPE_OCTETSTRING that specifies a description of the new or refreshed Console or

Optical Network message.
v An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or

refresh message (HWMCA_TRUE).
v An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refresh message.
v An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated

with the object that generated the new or refresh message.

78 Application Programming Interfaces

Message deletion (HWMCA_EVENT_HARDWARE_MESSAGE_DELETE)
v An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a Console or Optical

Network message (HWMCA_HARDWARE_MESSAGE).
v An HWMCA_TYPE_OCTETSTRING that specifies the message text of the Console or Optical Network

message being deleted.
v An HWMCA_TYPE_INTEGER which is always HWMCA_FALSE for this event.
v An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the message being deleted.
v An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated

with the object for which the message is being deleted.

Group

Group name bindings

Defined CPCs group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1

CPC images group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2

CPC user group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3

CPC images user group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3

Managed z/VM virtual machines group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10

Group attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.1.0
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.1.0
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.1.0.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.1.0.*
v Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.1.0.*

Status error
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Contains one or more objects that are in a state which is not an acceptable status.

HWMCA_FALSE
All objects contained within the group are in an acceptable status state.

v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.7.0
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.7.0
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.7.0.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.7.0.*
v Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.7.0.*

Chapter 4. Console application managed objects 79

Busy
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object in a busy state (currently performing a task).

HWMCA_FALSE
Object not in a busy state.

v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.8.0
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.8.0
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.8.0.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.8.0.*
v Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.8.0.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following values:
– HWMCA_CPC_GROUP
– HWMCA_CPC_IMAGE_GROUP
– HWMCA_CPC_USER_GROUP
– HWMCA_CPC_IMAGE_USER_GROUP
– HWMCA_VM_GROUP

v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.22.0
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.22.0
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.22.0.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.22.0.*
v Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.22.0.*

Contents
Get: Null terminated collection of blank separated object identifier strings.
v Data type(s) returned on Get: HWMCA_TYPE_OCTETSTRING
v Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.23.0
v CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.23.0
v CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.23.0.*
v CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.23.0.*
v Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.23.0.*

Note: In some cases the size of the data associated with this attribute is larger than what many
applications can traditionally handle. In this situation the same information can be determined by issuing
a series of GetNext requests to build the collection of object identifier strings.

Group commands

H/W (CPC) group
Commands that can be performed on this group are the same as the commands listed in the Defined
CPC object’s definition in “Defined CPC commands” on page 90 except for the
HWMCA_HW_MESSAGE_REFRESH_COMMAND and HWMCA_HW_MESSAGE_DELETE_COMMAND
commands.

CPC image group
Commands that can be performed on this group are the same as the commands listed in CPC image
object’s definition in “CPC image commands” on page 106. However, the send operating system
1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND) listed in this chapter is not valid for sending
to a group.

80 Application Programming Interfaces

CF image group
Commands that can be performed on this group are the same as the commands listed in CF image
object’s definition in “Coupling facility commands” on page 115. However, the send operating system
1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND) listed in this chapter is not valid for sending
to a group.

Group notifications

Object created (HWMCA_EVENT_CREATED)
This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)
This event has no additional data.

Defined CPC

Defined CPC name bindings

CPC object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.x.x.*

Where x.x. equals the attribute identifier for the object and * equals a unique number for that specific
instance of the CPC Object.

Defined CPC attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.1.0.*

Status error
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a state which is not an acceptable status.

HWMCA_FALSE
Object is in an acceptable status state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.7.0.*

Busy
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a busy state (currently performing a task).

HWMCA_FALSE
Object is not in a busy state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.8.0.*

Message indicator
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object has a hardware message.

Chapter 4. Console application managed objects 81

HWMCA_FALSE
Object does not have a hardware message.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.9.0.*

Status
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NO_POWER
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_SERVICE
– HWMCA_STATUS_LINKNOTACTIVE
– HWMCA_STATUS_POWERSAVE
– HWMCA_STATUS_SERVICE_REQ
– HWMCA_STATUS_DEGRADED

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.10.0.*

Acceptable status
Get/Set:
v Data type returned on Get: HWMCA_TYPE_INTEGER
v Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NO_POWER
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_SERVICE
– HWMCA_STATUS_LINKNOTACTIVE
– HWMCA_STATUS_POWERSAVE
– HWMCA_STATUS_SERVICE_REQ
– HWMCA_STATUS_DEGRADED

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.11.0.*

IML mode
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

– HWMCA_IML_ESA390_MODE
– HWMCA_IML_LPAR_MODE
– HWMCA_IML_ESA390TPF_MODE
– HWMCA_IML_LINUX_MODE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.12.0.*

Activation profile name
Get/Set (Reset or Load profile):
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A maximum length of 17 bytes is allowed for the activation profile name, including the null
terminator.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.13.0.*

82 Application Programming Interfaces

Last used activation profile
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.14.0.*

Internet address
Get:
v Data type returned on Get: HWMCA_TYPE_IPADDRESS
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.15.0.*

SNA address
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned will contain

the SNA address in the form NetId.Name.)
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.16.0.*

Computer (machine) model
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.17.0.*

Computer (machine) type
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.18.0.*

Computer (machine) serial
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.19.0.*

CPC serial number
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.20.0.*

CPC identifier
Get: Node descriptor identifier calculated by using location within computer (machine).
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.21.0.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_CPC_OBJECT
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.22.0.*

List of reset activation profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Reset
Activation profile.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.24.0.*

List of image activation profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Image
Activation profile.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Chapter 4. Console application managed objects 83

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.25.0.*

List of load activation profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Load
Activation profile.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.26.0.*

CBU installed
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
CBU is installed.

HWMCA_FALSE
CBU is not installed.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.32.0.*

CBU activated
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
CBU is activated.

HWMCA_FALSE
CBU is not activated.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.33.0.*

CBU activation date
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.34.0.*

CBU expiration date
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.35.0.*

Number of CBU tests left
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.36.0.*

Real CBU activation available
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Real CBU is available.

HWMCA_FALSE
Real CBU is not available.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.37.0.*

Reserve ID

Note: This attribute is available only on a Support Element console.

Get:

84 Application Programming Interfaces

v Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned contains the
name of the application that currently holds the reserve. A zero length string implies that no
application holds the reserve.)

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.44.0.*

Service required indicator
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Service Required indicator is on.

HWMCA_FALSE
Service Required indicator is not on.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.46.0.*

Degraded indicator
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

– HWMCA_NOT_DEGRADED
– HWMCA_DEGRADED_MEM
– HWMCA_DEGRADED_MBA
– HWMCA_DEGRADED_NODE
– HWMCA_DEGRADED_RING
– HWMCA_DEGRADED_CBU
– HWMCA_DEGRADED_MRU
– HWMCA_DEGRADED_AMBIENT
– HWMCA_DEGRADED_MRU_IML

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.47.0.*

CBU enabled
Get:

v Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE

CBU is enabled.
HWMCA_FALSE

CBU is not enabled.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.48.0.*

List of cluster members
Get: This returns a null terminated collection of blank separated SNA addresses for all other Support
Elements considered to be within the same cluster.

Note: This attribute is available only when targeting a Support Element.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.50.0.*

Processor running time type
Get/Set: Defines whether the processor running time is dynamically determined by the system or set to a
constant value for the Defined CPC object.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 (HWMCA_DETERMINED_SYSTEM)
The processor running is dynamically determined by the system.

1 (HWMCA_DETERMINED_USER)
The processor running time is set to a constant value.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.78.0.*

Chapter 4. Console application managed objects 85

Processor running time
Get/Set: Defines the amount of continuous time allowed for logical processors to perform jobs on shared
processors for the Defined CPC object.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

A value 1 - 100 for the user-defined processor running time.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER).

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.79.0.*

End timeslice if CPC image enters a wait state
Get/Set: Defines whether CPC Images lose their share of running time when they enter a wait state.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that a CPC Image should lose its share of running time when it enters a wait state.

HWMCA_FALSE
Indicates that a CPC Image should not lose its share of running time when it enters a wait
state.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER).

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.80.0.*

On/Off Capacity on Demand (On/Off CoD) installed
Get: Defines whether On/Off Capacity on Demand is installed for the Defined CPC object.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is installed.

HWMCA_FALSE
On/Off CoD is not installed.

Note: The attribute On/Off Capacity on Demand (On/Off CoD) Installed and attribute On/Off
Capacity on Demand (On/Off CoD) Activated always have the same value, either
HWMCA_TRUE or HWMCA_FALSE.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.87.0.*

On/Off Capacity on Demand (On/Off CoD) activated
Get: Defines whether On/Off Capacity on Demand is currently activated for the Defined CPC object.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is activated.

HWMCA_FALSE
On/Off CoD is not activated

Note: The attribute On/Off Capacity on Demand (On/Off CoD) Installed and attribute On/Off
Capacity on Demand (On/Off CoD) Activated always have the same value, either
HWMCA_TRUE or HWMCA_FALSE.
.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.88.0.*

86 Application Programming Interfaces

On/Off Capacity on Demand (On/Off CoD) enabled
Get: Defines whether On/Off Capacity on Demand is enabled for the Defined CPC object.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is enabled.

HWMCA_FALSE
On/Off CoD is not enabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.89.0.*

On/Off Capacity on Demand (On/Off CoD) activation date
Get: Defines the time stamp for when On/Off CoD was activated for the Defined CPC object.
v Data type for Get: HWMCA_TYPE_OCTETSTRING

A time stamp string describing when On/Off CoD was activated or an empty string if On/Off CoD is
not activated.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.90.0.*

List of group profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Group profile.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.91.0.*

Temporary capacity records
Get: A blank separated list of SNMP object identifiers for the installed temporary capacity records.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.119.0.*

Permanent software model
Get: The software model based on the permanent processors.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.120.0.*

Permanent plus billable software model
Get: The software model based on the permanent plus billable processors.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.121.0.*

Permanent plus all temporary software model
Get: The software model based on the permanent plus all temporary processors.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.122.0.*

Permanent MSU
Get: The MSU value associated with the software model based on the permanent processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.123.0.*

Permanent plus billable MSU
Get: The MSU value associated with the software model based on the permanent plus billable processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.124.0.*

Chapter 4. Console application managed objects 87

Permanent plus all temporary MSU
Get: The MSU value associated with the software model based on the permanent plus all temporary
processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.125.0.*

General purpose processors
Get: The count of general purpose processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.126.0.*

Service assist processors
Get: The count of service assist processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.127.0.*

Application Assist Processor (AAP) processors
Get: The count of Application Assist Processor (AAP) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.128.0.*

Integrated Facility for Linux (IFL) processors
Get: The count of Integrated Facility for Linux (IFL) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.129.0.*

Internal Coupling Facility (ICF) processors
Get: The count of Internal Coupling Facility (ICF) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.130.0.*

Integrated Information Processors (zIIP) processors
Get: The count of Integrated Information Processors (zIIP) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.131.0.*

Defective processors
Get: The count of defective processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.132.0.*

Spare processors
Get: The count of spare processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.133.0.*

Pending processors
Get: The count of processors pending activation.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.134.0.*

88 Application Programming Interfaces

Temporary capacity change allowed
Get: This value is used to determine if API applications are allowed to make changes to temporary
capacity.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
API applications are allowed to perform temporary capacity changes.

HWMCA_FALSE
API applications are not allowed to perform temporary capacity changes.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.149.0.*

Version
Get: The version number for the Defined CPC.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.151.0.*

Internet Protocol (IP) addresses
Get: A null terminated list of blank separated IP addresses being used by the defined CPC object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.161.0

Engineering Change (EC)/Microcode Level (MCL)
Get: An XML string that describes the EC and MCL levels for the defined CPC object. For more
information, see Appendix F, “XML descriptions,” on page 219.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.162.0

Automatic switch enabled
Get: This value is used to determine if automatic switching between primary and alternate Support
Elements is enabled for the Defined CPC object.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Automatic switching is enabled.

HWMCA_FALSE
Automatic switching is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.163.0.*

Server Time Protocol (STP) configuration
Get: An XML string that describes the STP configuration for the defined CPC object. For more
information, see Appendix F, “XML descriptions,” on page 219.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.165.0

Pending General Purpose Processors
Get: The count of pending general purpose processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.175.0.*

Pending Service Assist Processors
Get: The count of pending service assist processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.176.0.*

Chapter 4. Console application managed objects 89

Pending Application Assist Processor (AAP) Processors
Get: The count of pending Application Assist Processor (AAP) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.177.0.*

Pending Integrated Facility for Linux (IFL) Processors
Get: The count of pending Integrated Facility for Linux (IFL) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.178.0.*

Pending Internal Coupling Facility (ICF) Processors
Get: The count of pending Internal Coupling Facility (ICF) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.179.0.*

Pending Integrated Information Processors (zIIP) Processors
Get: The count of pending Integrated Information Processors (zIIP) processors.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.180.0.*

Defined CPC relationships

Cluster (String)
A CPC is a member of a cluster. There are one or more CPCs per cluster.

Support Element
A CPC has a one-to-one relationship with a Support Element (provider of services).

CF/CPC image
A CPC contains one or more images. This is determined by the activation reset profile.

Defined CPC commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Hardware message refresh
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.11 (HWMCA_HW_MESSAGE_REFRESH_COMMAND)

Hardware message delete
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.13 (HWMCA_HW_MESSAGE_DELETE_COMMAND)

Activate CBU
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.14 (HWMCA_ACTIVATE_CBU_COMMAND)

Undo CBU
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.15 (HWMCA_UNDO_CBU_COMMAND)

Import profiles
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.16 (HWMCA_IMPORT_PROFILE_COMMAND)

90 Application Programming Interfaces

Export profiles
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.17 (HWMCA_EXPORT_PROFILE_COMMAND)

Reserve
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.18 (HWMCA_RESERVE_COMMAND)

Activate On/Off Capacity on Demand (On/Off CoD)
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.23 (HWMCA_ACTIVATE_OOCOD_COMMAND)

Undo On/Off Capacity on Demand (On/Off CoD)
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.24 (HWMCA_UNDO_OOCOD_COMMAND)

Add temporary capacity
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.25 (HWMCA_ADD_CAPACITY_COMMAND)

Remove temporary capacity
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.26 (HWMCA_REMOVE_CAPACITY_COMMAND)

Swap Current Time Server
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.27(HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND)

Set STP configuration
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.28(HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND)

Change STP-only CTN
SNMP MIB Name:
1.3.6.1.4.1.2.6.42.4.29(HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND)

Join STP-only CTN
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.30(HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND)

Leave STP-only CTN
SNMP MIB Name:
1.3.6.1.4.1.2.6.42.4.31(HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND)

Defined CPC notifications

Message (HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For hardware messages:
v An HWMCA_TYPE_OCTETSTRING that specifies a description of the new or refreshed hardware

message.
v An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or

refresh message (HWMCA_TRUE).
v An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refresh message.
v An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated

with the object that generated the new or refresh message.

Message deletion (HWMCA_EVENT_HARDWARE_MESSAGE_DELETE)
v An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a CPC-related hardware

message (HWMCA_HARDWARE_MESSAGE).
v An HWMCA_TYPE_OCTETSTRING that specifies the message text of the hardware message being

deleted.

Chapter 4. Console application managed objects 91

v An HWMCA_TYPE_INTEGER which is always HWMCA_FALSE for this event.
v An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the message being deleted.
v An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated

with the object for which the message is being deleted.

Status change (HWMCA_EVENT_STATUS_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the new status value
v An HWMCA_TYPE_INTEGER that specifies the old status value.

Object’s name change (HWMCA_EVENT_NAME_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new object name
v An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object’s activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name
v An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.

Object created (HWMCA_EVENT_CREATED)
This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)
This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)
v An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state

(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Capacity change (HWMCA_EVENT_CAPACITY_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the type of capacity change that occurred.
v An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a Defined CPC object).

Capacity record change (HWMCA_EVENT_CAPACITY_RECORD_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the type of capacity record change that occurred.
v An HWMCA_TYPE_OCTETSTRING for the temporary capacity record that has changed.
v An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a Defined CPC object).

CPC image

CPC image name bindings

Image Object Identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.x.x.*

Where x.x. equals the attribute identifier for the object and * equals a unique number for that specific
instance of the CPC Image Object.

CPC image attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING

92 Application Programming Interfaces

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.1.0.*

Parent’s name
Get (CPC’s logical name):
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.2.0.*

Operating system name
Get: Name of Operating System running in image, if known.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.3.0.*

Operating system type
Get: Type of Operating System running in image, if known.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.4.0.*

Operating system level
Get: Level of Operating System running in image, if known.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.5.0.*

Sysplex name
Get: Applicable only for MVS™, if known.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.6.0.*

Status error
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a state which is not an acceptable status.

HWMCA_FALSE
Object is in an acceptable status state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.7.0.*

Busy
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object in a busy state (currently performing a task)

HWMCA_FALSE
Object not in a busy state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.8.0.*

Message indicator
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object has an operating system message.

HWMCA_FALSE
Object does not have an operating system message.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.9.0.*

Status
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 93

One of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_POWERSAVE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.10.0.*

Acceptable status
Get/Set:
v Data type returned on Get: HWMCA_TYPE_INTEGER
v Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_POWERSAVE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.11.0.*

IML/partition activation mode
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:
– HWMCA_IML_ESA390_MODE
– HWMCA_IML_S370_MODE
– HWMCA_IML_ESA390TPF_MODE
– HWMCA_IML_CF_PROD_MODE
– HWMCA_IML_LINUX_MODE
– HWMCA_IML_ZVM_MODE
– HWMCA_IML_ZAWARE_MODE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.12.0.*

Activation profile name
Get/Set (Image or Load profile):
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A maximum length of 17 bytes is allowed for the activation profile name, including the null
terminator.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.13.0.*

Last used activation profile
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.14.0.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_CPC_IMAGE_OBJECT
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.22.0.*

94 Application Programming Interfaces

Initial processing weight
Get/Set: The relative amount of shared general purpose processor resources initially allocated to the CPC
Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1 - 999 Represents the relative amount of shared general purpose processor resources initially allocated
to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared general purpose processor resources
allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.30.0.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight for general purpose processors is a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial general purpose processor processing weight for the CPC Image object
is capped. It represents the logical partition’s maximum share of general purpose processor
resources, regardless of the availability of excess general purpose processor resources.

HWMCA_FALSE (0)
Indicates that the initial general purpose processor processing weight for the CPC Image is not
capped. It represents the share of general purpose processor resources guaranteed to a logical
partition when all general purpose processor resources are in use. Otherwise, when excess
general purpose processor resources are available, the logical partition can use them if
necessary.

Note: The initial general purpose processor processing weight capped attribute cannot be set and the
value returned for a Get request is always HWMCA_FALSE when the CPC Image does not represent a
logical partition or the CPC Image does not represent a logical partition with at least one not dedicated
general purpose processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.31.0.*

Minimum processing weight
Get/Set: The minimum relative amount of shared general purpose processor resources allocated to the
CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1 - 999 Represents the minimum relative amount of shared general purpose processor resources
allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 95

A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared general purpose processor resources allocated to the CPC Image object. A
value of zero can also be specified to indicate that there is no minimum value for the processing
weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.38.0.*

Maximum processing weight
Get/Set: The maximum relative amount of shared general purpose processor resources allocated to the
CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1 - 999 Represents the maximum relative amount of shared general purpose processor resources
allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared general purpose processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.39.0.*

Current processing weight
Get: The relative amount of shared general purpose processor resources currently allocated to the CPC
Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1 - 999 Represents the relative amount of shared general purpose processor resources currently
allocated to the CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.41.0.*

Current processing weight capped
Get: Whether or not the current general purpose processing weight is a limit or a target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current general purpose processing weight for the CPC Image object is
capped. It represents the logical partition’s maximum share of resources, regardless of the
availability of excess processor resources.

HWMCA_FALSE
Indicates that the current general purpose processing weight for the CPC Image is not capped.
It represents the share of resources guaranteed to a logical partition when all processor
resources are in use. Otherwise, when excess processor resources are available, the logical
partition can use them if necessary.

96 Application Programming Interfaces

Note: The current general purpose processing weight capped attribute cannot be set and the value
returned for a get request is always HWMCA_FALSE when the CPC Image does not represent a logical
partition or the CPC Image does not represent a logical partition with at least one not dedicated
general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.42.0.*

Workload Manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.

This attribute and the various capping attributes are mutually exclusive and cannot be enabled at the
same time. Therefore in order to enable this attribute it may be necessary to first disable any capping
attribute that is currently enabled. It is also possible to use a value of -1 when setting this attribute,
which will result in this attribute being enabled and all capping attributes being disabled automatically
in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.40.0.*

Defined capacity
Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 No defined capacity is specified for this logical partition.

1 - nnnn
Represents the amount of defined capacity specified for this logical partition.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.43.0.*

Cluster name
Get: LPAR cluster name.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.50.0*

Partition identifier
Get: The partition identifier for the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.51.0*

Initial Application Assist Processor processing weight
Get/Set: The relative amount of shared Application Assist Processor (AAP) processor resources initially
allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1 - 999 Represents the relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.

Chapter 4. Console application managed objects 97

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Application Assist Processor (AAP)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.60.0.*

Initial Application Assist Processor processing weight capped
Get/Set: Whether or not the initial processing weight for Application Assist Processor (AAP) processors is
a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Application
Assist Processor (AAP) processor resources, regardless of the availability of excess Application
Assist Processor (AAP) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image is not capped. It represents the share of Application Assist Processor (AAP)
processor resources guaranteed to a logical partition when all Application Assist Processor
(AAP) processor resources are in use. Otherwise, when excess Application Assist Processor
(AAP) processor resources are available, the logical partition can use them if necessary.

Note: The initial Application Assist Processor (AAP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it may be necessary to first disable
the Workload manager enabled attribute. It is also possible to use a value of -1 when setting this
attribute, which will result in this attribute being enabled and the Workload manager enabled attribute
being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.61.0.*

Minimum Application Assist Processor processing weight
Get/Set: The minimum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the minimum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no minimum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.62.0.*

98 Application Programming Interfaces

Maximum Application Assist Processor processing weight
Get/Set: The maximum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the maximum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.63.0.*

Current Application Assist Processor processing weight
Get: The current relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the current relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.64.0.*

Current Application Assist Processor processing weight capped
Get: Whether or not the current Application Assist Processor (AAP) processing weight is a limit or a
target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Application Assist Processor (AAP) processing weight for the CPC
Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Application Assist Processor (AAP) processing weight for the CPC
Image is not capped. It represents the share of resources guaranteed to a logical partition when
all processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Application Assist Processor (AAP) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.65.0.*

Initial Integrated Facility for Linux processing weight
Get/Set: The relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 99

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Facility for Linux (IFL)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.66.0.*

Initial Integrated Facility for Linux processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Facility for Linux (IFL) processors is
a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Integrated
Facility for Linux (IFL) processor resources, regardless of the availability of excess Integrated
Facility for Linux (IFL) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image is not capped. It represents the share of Integrated Facility for Linux (IFL)
processor resources guaranteed to a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when excess Integrated Facility for Linux (IFL)
processor resources are available, the logical partition can use them if necessary.

Note: The initial Integrated Facility for Linux (IFL) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.67.0.*

Minimum Integrated Facility for Linux processing weight
Get/Set: The minimum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the minimum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no minimum value for the processing weight.

100 Application Programming Interfaces

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.68.0.*

Maximum Integrated Facility for Linux processing weight
Get/Set: The maximum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object. The maximum relative amount of shared Integrated Facility
for Linux (IFL) processor resources initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the maximum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.69.0.*

Current Integrated Facility for Linux processing weight
Get: The current relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the current relative amount of shared Integrated Facility for Linux (IFL) processor
resources initially allocated to the CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.70.0.*

Current Integrated Facility for Linux Processing weight capped
Get: Whether or not the current Integrated Facility for Linux (IFL) processing weight is a limit or a target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Integrated Facility for Linux (IFL) processing weight for the CPC
Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Integrated Facility for Linux (IFL) processing weight for the CPC
Image is not capped. It represents the share of resources guaranteed to a logical partition when
all processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Integrated Facility for Linux (IFL) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.71.0.*

Chapter 4. Console application managed objects 101

Initial Integrated Information Processors processing weight
Get/Set: The relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Information Processors (zIIP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.81.0.*

Initial Integrated Information Processors processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Information Processors (zIIP)
processors is a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image object is capped. It represents the logical partition’s maximum share of
Integrated Information Processors (zIIP) processor resources, regardless of the availability of
excess Integrated Information Processors (zIIP) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image is not capped. It represents the share of Integrated Information Processors
(zIIP) processor resources guaranteed to a logical partition when all Integrated Information
Processors (zIIP) processor resources are in use. Otherwise, when excess Integrated Information
Processors (zIIP) processor resources are available, the logical partition can use them if
necessary.

Note: The initial Integrated Information Processors (zIIP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it may be necessary to first disable
the Workload manager enabled attribute. It is also possible to use a value of -1 when setting this
attribute, which will result in this attribute being enabled and the Workload manager enabled attribute
being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.82.0.*

Minimum Integrated Information Processors processing weight
Get/Set: The minimum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the minimum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

102 Application Programming Interfaces

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. A value of zero can also be
specified to indicate that there is no minimum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.83.0.*

Maximum Integrated Information Processors Processing Weight
Get/Set: The maximum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the maximum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. Note: The setting of this
attribute is only valid for CPC Image objects that represent a logical partition with at least one not
dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.84.0.*

Current Integrated Information Processors processing weight
Get: The current relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the current relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.85.0.*

Current Integrated Information Processors processing weight capped
Get: Whether or not the current Integrated Information Processors (zIIP) processing weight is a limit or a
target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Integrated Information Processors (zIIP) processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Integrated Information Processors (zIIP) processing weight for the
CPC Image is not capped. It represents the share of resources guaranteed to a logical partition
when all processor resources are in use. Otherwise, when excess processor resources are
available, the logical partition can use them if necessary.

Note: The current Integrated Information Processors (zIIP) processing weight capped attribute cannot
be set and the value returned for a get request is always HWMCA_FALSE when the CPC Image does

Chapter 4. Console application managed objects 103

not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.86.0.*

Group profile name
Get/Set: Defines the name of the group capacity profile that is being used for the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.93.0.*.*

Program Status Word (PSW) information
Get: An XML string that describes the current PSW information for each logical processor associated with
the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.150.0

IPL Token
Get: The Token used in the last IPL.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.164.0

Group Profile capacity
Get/Set: The current capacity value of the Group Profile the CPC Image object is associated with.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.192.0

Last Used Load Address
Get: The load addressed used in the last IPL.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.201.0

Last Used Load Parameter
Get: The load parameter used in the last IPL.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.202.0

Absolute capping type
Get/Set: The type of absolute capping to perform.
v Data type returned on Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of processors
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.217.0.*

Absolute capping value
Get/Set: The value used for absolute capping (if enabled).
v Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of processors when capping in number of processors is enabled.

104 Application Programming Interfaces

|
|

|

||

||

|

|
|

|

||

|
|

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.218.0.*

Application Assist Processor absolute capping type
Get/Set: The type of absolute capping to perform for Application Assist Processor (AAP) processors.
v Data type returned on Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Application Assist Processor (AAP) processors
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.219.0.*

Application Assist Processor absolute capping value
Get/Set: The value used for Application Assist Processor (AAP) absolute capping.
v Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of Application Assist Processor (AAP) processors when capping in
number of processors is enabled.

Note: Though this is an integer, value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.220.0.*

Integrated Facility for Linux absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Facility for Linux (IFL) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Integrated Facility for Linux (IFL) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.221.0.*

Integrated Facility for Linux absolute capping value
Get/Set: The value used for Integrated Facility for Linux (IFL) absolute capping (if enabled).
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of Integrated Facility for Linux (IFL) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.222.0.*

Integrated Information Processor absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Information Processor (zIIP) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

Chapter 4. Console application managed objects 105

|
|
|

|

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

|
|

|

||

1 Absolute capping in number of Integrated Information Processor (zIIP) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.225.0.*

Integrated Information Processor absolute capping value
Get/Set: The value used for Integrated Information Processor (zIIP) absolute capping.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 Absolute capping not enabled.

1-nnnn
Represents the number of Integrated Information Processor (zIIP) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.226.0.*

CPC image relationships

CPC (H/W image)
A CPC image is a member of a CPC (H/W image); there can be from 1 to n CPC Images. N is
determined by the Licensed Internal Code.

Software image
A CPC image has one software image running in it.

Note: Some operating systems support running guest operating systems within themselves.

CPC image commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Reset normal
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.4 (HWMCA_RESETNORMAL_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Start
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.5 (HWMCA_START_COMMAND)

Stop
SNMP MIB Name - 1.3.6.1.4.1.2.6.42.4.6 (HWMCA_STOP_COMMAND)

PSW restart
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.7 (HWMCA_PSWRESTART_COMMAND)

Send operating system command
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND)

Load
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.10 (HWMCA_LOAD_COMMAND)

Reset clear
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.12 (HWMCA_RESETCLEAR_COMMAND)

106 Application Programming Interfaces

||

|

|
|

|

||

|
|
|

|
|
|

|

External interrupt
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.19 (HWMCA_EXTERNAL_INTERRUPT_COMMAND)

SCSI load
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.20 (HWMCA_SCSI_LOAD_COMMAND)

SCSI dump
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.21 (HWMCA_SCSI_DUMP_COMMAND)

CPC image notifications

Message (operating system - HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For operating system messages:
v An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message text.
v An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating system

message.
v An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message.
v An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message.
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should cause

the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a priority

message or not (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held

message or not (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with the

new operating system message or an HWMCA_TYPE_NULL indicating that there is no prompt text for
this new operating system message.

v An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated this
new operating system message or an HWMCA_TYPE_NULL indicating that there is no operating
system name associated with this new operating system message.

v An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

Status change (HWMCA_EVENT_STATUS_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the new status value
v An HWMCA_TYPE_INTEGER that specifies the old status value.

Object name change (HWMCA_EVENT_NAME_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new object name
v An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name
v An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.

Object created (HWMCA_EVENT_CREATED)
This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)
This event has no additional data.

Chapter 4. Console application managed objects 107

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)
v An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state

(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Disabled wait (HWMCA_EVENT_DISABLED_WAIT)
v An HWMCA_TYPE_OCTETSTRING for the name of the Defined CPC that is associated with the CPC

Image that entered a disabled wait state.
v An HWMCA_TYPE_OCTETSTRING for the disabled wait PSW value.
v An HWMCA_TYPE_INTEGER for the partition identifier of the CPC Image that entered a disabled

wait state.
v An HWMCA_TYPE_INTEGER for number of the processor that entered a disabled wait state.
v An HWMCA_TYPE_OCTETSTRING for the serial number of the Defined CPC that is associated with

the CPC Image that entered a disabled wait state.
v An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in

this case a CPC Image object).

Coupling facility

Coupling facility name bindings

Coupling facility object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.x.x.*

Where x.x. equals the attribute identifier for the object and an * equals a unique number for that specific
instance of the Coupling Facility Object.

Coupling facility attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.1.0.*

Parent name
Get (CPC’s logical name):
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.2.0.*

Status error
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a state which is not an acceptable status.

HWMCA_FALSE
Object is in an acceptable status state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.7.0.*

Busy
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object in a busy state (currently performing a task).

108 Application Programming Interfaces

HWMCA_FALSE
Object not in a busy state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.8.0.*

Message indicator
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object has an operating system message.

HWMCA_FALSE
Object does not have an operating system message.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.9.0.*

Status
Get:
v Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_POWERSAVE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.10.0.*

Acceptable status
Get/Set:
v Data type returned on Get: HWMCA_TYPE_INTEGER
v Data type for Set: HWMCA_TYPE_INTEGER
v One or more of the following bit values will be set to on:

– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_EXCEPTIONS
– HWMCA_STATUS_STATUS_CHECK
– HWMCA_STATUS_POWERSAVE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.11.0.*

Activation profile name
Get (always the Image profile):
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.13.0.*

Last used activation profile
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.14.0.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_CF_OBJECT
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.22.0.*

Chapter 4. Console application managed objects 109

Initial processing weight
Get/Set: The relative amount of shared general purpose processor resources initially allocated to the
Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purposee processor.

1 - 999 Represents the relative amount of shared general purpose processor resources initially allocated
to the Coupling Facility object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.30.0.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight for general purpose processors is a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial general purpose processor processing weight for the Coupling Facility
object is capped. It represents the logical partition’s maximum share of general purpose
processor resources, regardless of the availability of excess general purpose processor resources.

HWMCA_FALSE (0)
Indicates that the initial general purpose processor processing weight for the Coupling Facility
is not capped. It represents the share of general purpose processor resources guaranteed to a
logical partition when all general purpose processor resources are in use. Otherwise, when
excess general purpose processor resources are available, the logical partition can use them if
necessary.

Note: The initial general purpose processor processing weight capped attribute cannot be set and the
value returned for a get request is always HWMCA_FALSE when the Coupling Facility does not
represent a logical partition or the Coupling Facility does not represent a logical partition with at least
one not dedicated general purpose processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.31.0.*

Minimum processing weight
Get/Set: The minimum relative amount of shared general purpose processor resources allocated to the
Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1 - 999 Represents the minimum relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

v Data type for Set: HWMCA_TYPE_INTEGER

110 Application Programming Interfaces

A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared general purpose processor resources allocated to the Coupling Facility object.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.38.0.*

Maximum processing weight
Get/Set: The maximum relative amount of shared general purpose processor resources allocated to the
Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1 - 999 Represents the maximum relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared general purpose processor resources allocated to the Coupling Facility object.
A value of zero can also be specified to indicate that there is no maximum value for the processing
weight.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.39.0.*

Current processing weight
Get: The relative amount of shared general purpose processor resources currently allocated to the
Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1 - 999 Represents the relative amount of shared general purpose processor resources currently
allocated to the Coupling Facility object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.41.0.*

Current processing weight capped
Get: Whether or not the current general purpose processing weight is a limit or a target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current general purpose processing weight for the Coupling Facility object is
capped. It represents the logical partition’s maximum share of resources, regardless of the
availability of excess processor resources.

HWMCA_FALSE
Indicates that the general purpose current processing weight for the Coupling Facility is not
capped. It represents the share of resources guaranteed to a logical partition when all processor
resources are in use. Otherwise, when excess processor resources are available, the logical
partition can use them if necessary.

Chapter 4. Console application managed objects 111

Note: The current general purpose processing weight capped attribute cannot be set and the value
returned for a get request is always HWMCA_FALSE when the Coupling Facility does not represent a
logical partition or the Coupling Facility does not represent a logical partition with at least one not
dedicated general purpose processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.42.0.*

WorkLoad manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.

This attribute and the various capping attributes are mutually exclusive and cannot be enabled at the
same time. Therefore in order to enable this attribute it might be necessary to first disable any capping
attribute that is currently enabled. It is also possible to use a value of -1 when setting this attribute,
which will result in this attribute being enabled and all capping attributes being disabled automatically
in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.40.0.*

Defined capacity
Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 No defined capacity is specified for this logical partition.

1 - nnnn
Represents the amount of defined capacity specified for this logical partition.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.43.0.*

Partition identifier
Get: The partition identifier for the Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.51.0*

Initial Internal Coupling Facility processing weight
Get/Set: The relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Internal Coupling Facility (ICF) processor
resources allocated to the CPC Image object.

112 Application Programming Interfaces

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.72.0.*

Initial Internal Coupling Facility processing weight capped
Get/Set: Whether or not the initial processing weight for Internal Coupling Facility (ICF) processors is a
limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Internal
Coupling Facility (ICF) processor resources, regardless of the availability of excess Internal
Coupling Facility (ICF) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image is not capped. It represents the share of Internal Coupling Facility (ICF) processor
resources guaranteed to a logical partition when all Internal Coupling Facility (ICF) processor
resources are in use. Otherwise, when excess Internal Coupling Facility (ICF) processor
resources are available, the logical partition can use them if necessary.

Note: The initial Internal Coupling Facility (ICF) processor processing weight capped attribute cannot
be set and the value returned for a Get request is always HWMCA_FALSE when the CPC Image does
not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Internal Coupling Facility (ICF) processor.
This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.73.0.*

Minimum Internal Coupling Facility processing weight
Get/Set: The minimum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the minimum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.74.0.*

Maximum Internal Coupling Facility processing weight
Get/Set: The maximum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 113

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the maximum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.75.0.*

Current Internal Coupling Facility processing weight
Get: The current relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the current relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.76.0.*

Current Internal Coupling Facility processing weight capped
Get: Whether or not the current Internal Coupling Facility (ICF) processing weight is a limit or a target.
v Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Internal Coupling Facility (ICF) processing weight for the CPC Image
object is capped. It represents the logical partition’s maximum share of resources, regardless of
the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Internal Coupling Facility (ICF) processing weight for the CPC Image
is not capped. It represents the share of resources guaranteed to a logical partition when all
processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Internal Coupling Facility (ICF) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Internal Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.77.0.*

Program Status Word (PSW) information
Get: An XML string that describes the current PSW information for each logical processor associated with
the Coupling Facility object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.150.0

114 Application Programming Interfaces

Internal Coupling Facility absolute capping type
Get/Set: The type of absolute capping to perform for Internal Coupling Facility (ICF) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Internal Coupling Facility (ICF) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.223.0.*

Internal Coupling Facility absolute capping value
Get/Set: The value used for Internal Coupling Facility (ICF) absolute capping.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 Absolute capping not enabled.

1-nnnn
Represents the number of Internal Coupling Facility (ICF) processors when capping in number
of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.224.0.*

Coupling facility relationships

CPC (H/W image)
A coupling facility image is a member of a CPC (H/W image) there can be from 1 to n coupling facility
images. N is determined by the Licensed Internal Code.

Coupling Facility Control Code (CFCC)
A coupling facility image is running the Coupling Facility Control Code to perform the Coupling Facility
functions.

Coupling facility commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Send operating system command
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND)

Coupling facility notifications

Message (operating system - HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For operating system messages:
v An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message text.
v An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating system

message.
v An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message.

Chapter 4. Console application managed objects 115

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

v An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message.
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should cause

the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a priority

message or not (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held

message or not (HWMCA_TRUE or HWMCA_FALSE).
v An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with the

new operating system message or an HWMCA_TYPE_NULL indicating that there is no prompt text for
this new operating system message.

v An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated this
new operating system message or an HWMCA_TYPE_NULL indicating that there is no operating
system name associated with this new operating system message.

v An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

Status change (HWMCA_EVENT_STATUS_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the new status value
v An HWMCA_TYPE_INTEGER that specifies the old status value.

Object name change (HWMCA_EVENT_NAME_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new object name
v An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
v An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name
v An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.

Object created (HWMCA_EVENT_CREATED)
This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)
This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)
v An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state

(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Reset activation profile object

Reset activation profile name bindings

Reset activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Reset Activation Profile.

116 Application Programming Interfaces

Reset activation profile attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.1.0.*.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_ACT_PROFILE_RESET
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.22.0.*.*

IOCDS
Get/Set:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Reset Activation Profile will use the
currently active IOCDS.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.27.0.*.*

Processor running time type
Get/Set: Defines whether the processor running time is dynamically determined by the system or set to a
constant value for the Defined CPC object.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 (HWMCA_DETERMINED_SYSTEM)
The processor running is dynamically determined by the system.

1 (HWMCA_DETERMINED_USER)
The processor running time is set to a constant value.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.78.0.*.*

Processor running time
Get/Set: Defines the amount of continuous time allowed for logical processors to perform jobs on shared
processors for the Defined CPC object.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

A value between 1 and 100 for the user defined processor running time.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER). Additionally, this value will always be returned as zero if the
processor running time type is set to 0 (HWMCA_DETERMINED_SYSTEM).

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.79.0.*.*

End timeslice if CPC image enters a wait state
Get/Set: Defines whether CPC Images lose their share of running time when they enter a wait state.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that a CPC Image should lose its share of running time when it enters a wait state.

HWMCA_FALSE
Indicates that a CPC Image should not lose its share of running time when it enters a wait
state.

Chapter 4. Console application managed objects 117

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER). Additionally, this value will always be returned as zero if the
processor running time type is set to 0 (HWMCA_DETERMINED_SYSTEM).

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.80.0.*.*

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.203.0.*.*

Image activation profile object

Image activation profile name bindings

Image activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Image Activation Profile.

Image activation profile attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.1.0.*.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_ACT_PROFILE_IMAGE
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.22.0.*.*

IPL address
Get/Set:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Image Activation Profile will use next IPL
address set by HCD.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.28.0.*.*

IPL parameter
Get/Set:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Image Activation Profile will use next IPL
parameter set by HCD.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.29.0.*.*

118 Application Programming Interfaces

Initial processing weight
Get/Set: The relative amount of shared processor resources initially allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1 - 999 Represents the relative amount of shared processor resources initially allocated to the CPC
Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared processor resources allocated to the CPC
Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.30.0.*.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight is a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial processing weight for the CPC Image object is capped. It represents the
logical partition’s maximum share of resources, regardless of the availability of excess processor
resources.

HWMCA_FALSE
Indicates that the initial processing weight for the CPC Image is not capped. It represents the
share of resources guaranteed to a logical partition when all processor resources are in use.
Otherwise, when excess processor resources are available, the logical partition can use them if
necessary.

Note: The initial processing weight capped attribute cannot be set and the value returned for a Get
request is always HWMCA_FALSE when the CPC Image does not represent a logical partition with at
least one not dedicated central processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.31.0.*.*

Minimum processing weight
Get/Set: The minimum relative amount of shared processor resources allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1 - 999 Represents the minimum relative amount of shared processor resources allocated to the CPC
Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.38.0.*.*

Chapter 4. Console application managed objects 119

Maximum processing weight
Get/Set: The maximum relative amount of shared processor resources allocated to the CPC Image object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1 - 999 Represents the maximum relative amount of shared processor resources allocated to the CPC
Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.39.0.*.*

WorkLoad manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.40.0.*.*

Defined capacity
Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 No defined capacity is specified for this logical partition.

1 - nnnn
Represents the amount of defined capacity specified for this logical partition.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.43.0.*.*

IPL type
Get/Set: The IPL type value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_IPLTYPE_STANDARD
Indicates that the image activation profile is used to perform a standard load.

HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is used to perform a SCSI load.

HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is used to perform a SCSI dump.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.52.0.*.*

120 Application Programming Interfaces

Worldwide port name
Get/Set: The worldwide port name value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.53.0.*.*

Boot program selector
Get/Set: The boot program selector value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.54.0.*.*

Logical unit number
Get/Set: The logical unit number value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.55.0.*.*

Boot record logical block address
Get/Set: The boot record logical block address value for the activation profile.
v Data type for get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.56.0.*.*

Operating system specific load parameters
Get/Set: The operating system specific load parameters for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.57.0.*.*

Initial Application Assist Processor processing weight
Get/Set: The relative amount of shared Application Assist Processor (AAP) processor resources initially
allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Application Assist Processor (AAP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Application
Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.60.0.*.*

Initial Application Assist Processor processing weight capped
Get/Set: Whether or not the initial processing weight for Application Assist Processor (AAP) processors is
a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Application
Assist Processor (AAP) processor resources, regardless of the availability of excess Application
Assist Processor (AAP) processor resources.

HWMCA_FALSE
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the

Chapter 4. Console application managed objects 121

CPC Image is not capped. It represents the share of Application Assist Processor (AAP)
processor resources guaranteed to a logical partition when all Application Assist Processor
(AAP) processor resources are in use. Otherwise, when excess Application Assist Processor
(AAP) processor resources are available, the logical partition can use them if necessary.

Note: The initial Application Assist Processor (AAP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.61.0.*.*

Minimum Application Assist Processor processing weight
Get/Set: The minimum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the minimum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. Note: The setting of this attribute is only
valid for CPC Image objects that represent a logical partition with at least one not dedicated
Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.62.0.*.*

Maximum Application Assist Processor processing weight
Get/Set: The maximum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the maximum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.63.0.*.*

Initial Integrated Facility for Linux processing weight
Get/Set: The relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.

122 Application Programming Interfaces

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Facility for Linux (IFL)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.66.0.*.*

Initial Integrated Facility for Linux Processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Facility for Linux (IFL) processors is
a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Integrated
Facility for Linux (IFL) processor resources, regardless of the availability of excess Integrated
Facility for Linux (IFL) processor resources.

HWMCA_FALSE
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image is not capped. It represents the share of Integrated Facility for Linux (IFL)
processor resources guaranteed to a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when excess Integrated Facility for Linux (IFL)
processor resources are available, the logical partition can use them if necessary.

Note: The initial Integrated Facility for Linux (IFL) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.67.0.*.*

Minimum Integrated Facility for Linux processing weight
Get/Set: The minimum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the minimum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. Note: The setting of this attribute is only
valid for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.68.0.*.*

Maximum Integrated Facility for Linux processing weight
Get/Set: The maximum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

Chapter 4. Console application managed objects 123

1-999 Represents the maximum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Application
Assist Processor (AAP) processor. A value of zero can also be specified to indicate that there is no
maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.69.0.*.*

Initial Internal Coupling Facility processing weight
Get/Set: The relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Internal Coupling Facility (ICF) processor
resources allocated to the CPC Image object. Note: The setting of this attribute is only valid for CPC
Image objects that represent a logical partition with at least one not dedicated Internal Coupling
Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.72.0.*.*

Initial Internal Coupling Facility processing weight capped
Get/Set: Whether or not the initial processing weight for Internal Coupling Facility (ICF) processors is a
limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Internal
Coupling Facility (ICF) processor resources, regardless of the availability of excess Internal
Coupling Facility (ICF) processor resources.

HWMCA_FALSE
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image is not capped. It represents the share of Internal Coupling Facility (ICF) processor
resources guaranteed to a logical partition when all Internal Coupling Facility (ICF) processor
resources are in use. Otherwise, when excess Internal Coupling Facility (ICF) processor
resources are available, the logical partition can use them if necessary.

Note: The initial Internal Coupling Facility (ICF) processor processing weight capped attribute cannot
be set and the value returned for a Get request is always HWMCA_FALSE when the CPC Image does
not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Internal Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.73.0.*.*

124 Application Programming Interfaces

Minimum Internal Coupling Facility processing weight
Get/Set: The minimum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the minimum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Internal
Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.74.0.*.*

Maximum Internal Coupling Facility processing weight
Get/Set: The maximum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the maximum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Internal
Coupling Facility (ICF) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.75.0.*.*

Initial Integrated Information Processors processing weight
Get/Set: The relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Information Processors (zIIP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.81.0.*.*

Initial Integrated Information Processors processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Information Processors (zIIP)
processors is a limit or a target.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 125

HWMCA_TRUE
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image object is capped. It represents the logical partition’s maximum share of
Integrated Information Processors (zIIP) processor resources, regardless of the availability of
excess Integrated Information Processors (zIIP) processor resources.

HWMCA_FALSE
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image is not capped. It represents the share of Integrated Information Processors
(zIIP) processor resources guaranteed to a logical partition when all Integrated Information
Processors (zIIP) processor resources are in use. Otherwise, when excess Integrated Information
Processors (zIIP) processor resources are available, the logical partition can use them if
necessary.

Note: The initial Integrated Information Processors (zIIP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.82.0.*.*

Minimum Integrated Information Processors processing weight
Get/Set: The minimum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the minimum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. Note: The setting of this
attribute is only valid for CPC Image objects that represent a logical partition with at least one not
dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.83.0.*.*

Maximum Integrated Information Processors processing weight
Get/Set: The maximum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object activated with this profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the maximum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

v Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. A value of zero can also be
specified to indicate that there is no maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.84.0.*.*

126 Application Programming Interfaces

Group profile name
Get/Set: Defines the name of the group capacity profile that is to be used for the CPC Image object
activated with this profile.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.93.0.*.*

Load at activation
Get/Set: Defines if the CPC Image object activated with this profile should be loaded (IPLed) at the end
of the activation.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The CPC Image object will be loaded (IPLed) at the end of the activation.

HWMCA_FALSE
The CPC Image object will not be loaded (IPLed) at the end of the activation.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.94.0.*.*

Central storage
Get/Set: Defines the initial amount of central storage (in megabytes) to be used for the CPC Image object
activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.95.0.*.*

Reserved central storage
Get/Set: Defines the reserved amount of central storage (in megabytes) to be used for the CPC Image
object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.96.0.*.*

Expanded storage
Get/Set: Defines the initial amount of expanded storage (in megabytes) to be used for the CPC Image
object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.97.0.*.*

Reserved expanded storage
Get/Set: Defines the reserved amount of expanded storage (in megabytes) to be used for the CPC Image
object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.98.0.*.*

Number of dedicated general purpose processors
Get/Set: Defines the number of dedicated general purpose processors to be used for the CPC Image
object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.99.0.*.*

Number of reserved dedicated general purpose processors
Get/Set: Defines the number of reserved dedicated general purpose processors to be used for the CPC
Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.100.0.*.*

Chapter 4. Console application managed objects 127

Number of dedicated Application Assist Processor (AAP) processors
Get/Set: Defines the number of dedicated Application Assist Processor (AAP) processors to be used for
the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.101.0.*.*

Number of reserved dedicated Application Assist Processor (AAP) Processors
Get/Set: Defines the number of reserved dedicated Application Assist Processor (AAP) processors to be
used for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.102.0.*.*

Number of dedicated Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of dedicated Integrated Facility for Linux (IFL) processors to be used for the
CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.103.0.*.*

Number of reserved dedicated Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of reserved dedicated Integrated Facility for Linux (IFL) processors to be
used for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.104.0.*.*

Number of dedicated Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of dedicated Internal Coupling Facility (ICF) processors to be used for the
CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.105.0.*.*

Number of reserved dedicated Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of reserved dedicated Internal Coupling Facility (ICF) processors to be used
for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.106.0.*.*

Number of dedicated Integrated Information Processors (zIIP) processors
Get/Set: Defines the number of dedicated Integrated Information Processors (zIIP) processors to be used
for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.107.0.*.*

Number of reserved dedicated Integrated Information Processors (zIIP) processors
Get/Set: Defines the number of reserved dedicated Integrated Information Processors (zIIP) processors to
be used for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.108.0.*.*

Number of shared general purpose processors
Get/Set: Defines the number of shared general purpose processors to be used for the CPC Image object
activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

128 Application Programming Interfaces

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.109.0.*.*

Number of reserved shared general purpose processors
Get/Set: Defines the number of reserved shared general purpose processors to be used for the CPC Image
object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.110.0.*.*

Number of shared Application Assist Processor (AAP) processors
Get/Set: Defines the number of shared Application Assist Processor (AAP) processors to be used for the
CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.111.0.*.*

Number of reserved shared Application Assist Processor (AAP) processors
Get/Set: Defines the number of reserved shared Application Assist Processor (AAP) processors to be used
for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.112.0.*.*

Number of shared Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of shared Integrated Facility for Linux (IFL) processors to be used for the
CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.113.0.*.*

Number of reserved shared Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of reserved shared Integrated Facility for Linux (IFL) processors to be used
for the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.114.0.*.*

Number of shared Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of shared Internal Coupling Facility (ICF) processors to be used for the CPC
Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.115.0.*.*

Number of reserved shared Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of reserved shared Internal Coupling Facility (ICF) processors to be used for
the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.116.0.*.*

Number of shared Integrated Information Processors (zIIP) processors
Get/Set: Defines the number of shared Integrated Information Processors (zIIP) processors to be used for
the CPC Image object activated with this profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.117.0.*.*

Number of reserved shared Integrated Information Processors (zIIP) processors
Get/Set: Defines the number of reserved shared Integrated Information Processors (zIIP) processors to be
used for the CPC Image object activated with this profile.

Chapter 4. Console application managed objects 129

v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.118.0.*.*

Basic CPU counter authorization control
Get/Set: Enables/disables the use of the basic CPU counter facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.168.0.*.*

Problem state CPU counter authorization control
Get/Set: Enables/disables the use of the problem state CPU counter facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.169.0.*.*

Crypto activity CPU counter authorization control
Get/Set: Enables/disables the use of the crypto activity CPU counter facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.170.0.*.*

Extended CPU counter authorization control
Get/Set: Enables/disables the use of the extended CPU counter facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.171.0.*.*

Coprocessor group CPU counter authorization control
Get/Set: Enables/disables the use of the coprocessor group CPU counter facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.172.0.*.*

130 Application Programming Interfaces

Basic CPU sampling authorization control
Get/Set: Enables/disables the use of the basic CPU sampling facility for the CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.173.0.*.*

Permit AES key import functions
Get/Set: Enables/disables the importing of AES keys for the associated CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The importing of AES keys is enabled.

HWMCA_FALSE
The importing of AES keys is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.183.0.*.*

Permit DEA key import functions
Get/Set: Enables/disables the importing of DEA keys for the associated CPC Image.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The importing of DEA keys is enabled.

HWMCA_FALSE
The importing of DEA keys is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.184.0.*.*

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.203.0.*.*

Partition Identifier
Get/Set: The partition identifier for the activation profile.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v Data type for Set: HWMCA_TYPE_INTEGER between 0 and 63, inclusive.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.51.0.*.*

Operating mode
Get/Set: The operating mode value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

– HWMCA_ESA390_OPERATING_MODE (1)
– HWMCA_ESA390TPF_OPERATING_MODE (2)
– HWMCA_CF_OPERATING_MODE (3)
– HWMCA_LINUX_OPERATING_MODE (4)
– HWMCA_FMEX_OPERATING_MODE (5)
– HWMCA_HMEX_OPERATING_MODE (6)

Chapter 4. Console application managed objects 131

– HWMCA_HMAS_OPERATING_MODE (7)
– HWMCA_ZVM_OPERATING_MODE (8)
– HWMCA_ZAWARE_OPERATING_MODE (9)

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.204.0.*.*

Clock type
Get/Set: The clock type assignment for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

– HWMCA_CLOCK_TYPE_STANDARD (0)
– HWMCA_CLOCK_TYPE_LPAR (1)

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.205.0.*.*

Time offset days
Get/Set: The time offset days for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER (0 - 999)
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.206.0.*.*

Time offset hours
Get/Set: The time offset hours for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER (0 - 23)
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.207.0.*.*

Time offset minutes
Get/Set: The time offset minutes for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER (0, 15, 30, or 45)
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.208.0.*.*

Time offset increase or decrease
Get/Set: The time offset increase/decrease setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The local time zone is east of GMT.

HWMCA_FALSE
The local time zone is west of GMT.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.209.0.*.*

LICCC validation
Get/Set: Enables/disables whether or not the activation profile must conform to the current LICCC
configuration.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The activation profile must conform to the current LICCC configuration.

HWMCA_FALSE
The activation profile is not required to conform to the current LICCC configuration.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.210.0.*.*

Global performance data control
Get/Set: Enables/disables the global performance data control setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

132 Application Programming Interfaces

HWMCA_TRUE
The global performance data control is enabled.

HWMCA_FALSE
The global performance data control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.211.0.*.*

Input/Output configuration control
Get/Set: Enables/disables the I/O configuration control setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The I/O configuration control is enabled.

HWMCA_FALSE
The I/O configuration control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.212.0.*.*

Cross partition authority control
Get: The cross partition authority control setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The cross partition authority control is enabled.

HWMCA_FALSE
The cross partition authority control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.213.0.*.*

Logical partition isolation control
Get/Set: Enables/disables the logical partition isolation control setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The logical partition isolation control is enabled.

HWMCA_FALSE
The logical partition isolation control is disabled.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.214.0.*.*

Absolute capping type
Get/Set: The type of absolute capping to perform.
v Data type returned on Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of processors
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.217.0.*

Absolute capping value
Get/Set: The value used for absolute capping (if enabled).
v Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of processors when capping in number of processors is enabled.

Chapter 4. Console application managed objects 133

|
|

|

||

||

|

|
|

|

||

|
|

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.218.0.*

Application Assist Processor absolute capping type
Get/Set: The type of absolute capping to perform for Application Assist Processor (AAP) processors.
v Data type returned on Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Application Assist Processor (AAP) processors
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.219.0.*

Application Assist Processor absolute capping value
Get/Set: The value used for Application Assist Processor (AAP) absolute capping.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of Application Assist Processor (AAP) processors when capping in
number of processors is enabled.

Note: Though this is an integer, value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.220.0.*

Integrated Facility for Linux absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Facility for Linux (IFL) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Integrated Facility for Linux (IFL) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.221.0.*

Integrated Facility for Linux absolute capping value
Get/Set: The value used for Integrated Facility for Linux (IFL) absolute capping (if enabled).
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 None

1-nnnn
Represents the number of Integrated Facility for Linux (IFL) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.222.0.*

Internal Coupling Facility absolute capping type
Get/Set: The type of absolute capping to perform for Internal Coupling Facility (ICF) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

134 Application Programming Interfaces

|
|
|

|

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

|
|

|

||

1 Absolute capping in number of Internal Coupling Facility (ICF) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.223.0.*

Internal Coupling Facility absolute capping value
Get/Set: The value used for Internal Coupling Facility (ICF) absolute capping.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 Absolute capping not enabled.

1-nnnn
Represents the number of Internal Coupling Facility (ICF) processors when capping in number
of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.224.0.*

Integrated Information Processor absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Information Processor (zIIP) processors.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

0 None

1 Absolute capping in number of Integrated Information Processor (zIIP) processors.
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.225.0.*

Integrated Information Processor absolute capping value
Get/Set: The value used for Integrated Information Processor (zIIP) absolute capping.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

0 Absolute capping not enabled.

1-nnnn
Represents the number of Integrated Information Processor (zIIP) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.226.0.*

Load activation profile object

Load activation profile name bindings

Load activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Load Activation Profile.

Chapter 4. Console application managed objects 135

||

|

|
|

|

||

|
|
|

|
|
|

|

|
|

|

||

||

|

|
|

|

||

|
|
|

|
|
|

|

Load activation profile attributes

Name
Get:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.1.0.*.*

Object type
Get: This returns the type of object the object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_ACT_PROFILE_LOAD
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.22.0.*.*

IPL address
Get/Set:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Load Activation Profile will use next IPL
address set by HCD.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.28.0.*.*

IPL parameter
Get/Set:
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Load Activation Profile will use next IPL
parameter set by HCD.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.29.0.*.*

IPL type
Get/Set: The IPL type value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_IPLTYPE_STANDARD
Indicates that the image activation profile is used to perform a standard load.

HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is used to perform a SCSI load.

HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is used to perform a SCSI dump.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.52.0.*.*

Worldwide port name
Get/Set: The worldwide port name value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.53.0.*.*

Boot program selector
Get/Set: The boot program selector value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.54.0.*.*

Logical unit number
Get/Set: The logical unit number value for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.55.0.*.*

136 Application Programming Interfaces

Boot record logical block address
Get/Set: The boot record logical block address value for the activation profile.
v Data type for get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.56.0.*.*

Operating system specific load parameters
Get/Set: The operating system specific load parameters for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.57.0.*.*

Store Status
Get/Set: The store status setting for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The store status is performed before the load starts.

HWMCA_FALSE
The store status is not performed before the load starts.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.166.0.*.*.*.*

Load Type
Get/Set: The load type for the activation profile.
v Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Clears main storage during the load.

HWMCA_FALSE
Performs the load without clearing main storage.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.167.0.*.*.*.*

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.203.0.*.*

Group profile object

Group profile name bindings

Group profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific
instance of the CPC Object, and z equals a unique number for the specific instance of the Group
Profile.

Group profile attributes

Name
Get: This returns the name of object the group profile object identifier represents.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.1.0.*.*.*.*

Chapter 4. Console application managed objects 137

Object type
Get: This returns the type of object the group profile object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_ACT_PROFILE_GROUP
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.22.0.*.*.*.*

Capacity
Get/Set: This returns the capacity value of object the group profile object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.92.0.*.*.*.*

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v Data type for Set: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.203.0.*.*

Capacity record object

Capacity record name bindings

Capacity record object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific
instance of the Defined CPC Object, and z equals a unique number for the specific instance of the
Capacity Record. Additionally, the capacity record itself can be queried using an object identifier
of the form 1.3.6.1.4.1.2.6.42.9.0.y.z. When the capacity record itself is queried, it returns a data
type of HWMCA_TYPE_OCTETSTRING with the data being an XML string describing all aspects
of the record. Refer to Appendix F, “XML descriptions,” on page 219 for details on the format of
the XML that is returned.

Capacity record attributes

Object type
Get: This returns the type of object the capacity record object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.22.0.*.*

Record identifier
Get: This returns the identifier for the capacity record.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.135.0.*.*.*.*

Record type
Get: This returns a value that indicates the type of capacity record.
v Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD_TYPE_CBU

HWMCA_CAPACITY_RECORD_TYPE_OOCOD
HWMCA_CAPACITY_RECORD_TYPE_PLANNED_EVENT
HWMCA_CAPACITY_RECORD_TYPE_LOANER

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.136.0.*.*.*.*

138 Application Programming Interfaces

Activation status
Get: This returns an indication if any of the resources defined for the record are currently activated.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_CAPACITY_RECORD_STATUS_NOT_ACTIVATED
HWMCA_CAPACITY_RECORD_STATUS_REAL HWMCA_CAPACITY_RECORD_STATUS_TEST
HWMCA_CAPACITY_RECORD_STATUS_CAN_BE_ACTIVATED

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.137.0.*.*.*.*

Activation date
Get: Defines the time stamp for when additional capacity for the record was activated.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.138.0.*.*.*.*

Record expiration date
Get: Defines the time stamp for when the capacity record will expire.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.139.0.*.*.*.*

Activation expiration date
Get: Defines the time stamp for when the additional capacity activated for the record will expire and no
longer be active.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.140.0.*.*.*.*

Maximum real days
Get: Defines the maximum days that real additional capacity can be activated for the record. A value of
-1 indicates that the number of days is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.141.0.*.*.*.*

Maximum test days
Get: Defines the maximum days that test additional capacity can be activated for the record. A value of -1
indicates that the number of days is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.142.0.*.*.*.*

Remaining real days
Get: Defines the remaining number of days that additional real capacity can be active for the record. A
value of -1 indicates that the number of days is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.143.0.*.*.*.*

Remaining test days
Get: Defines the remaining number of days that additional test capacity can be active for the record. A
value of -1 indicates that the number of days is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.144.0.*.*.*.*

Remaining number of real activations
Get: Defines the number of times that real additional capacity can be activated for the record. A value of
-1 indicates that activation count is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 139

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.147.0.*.*.*.*

Remaining number of test activations
Get: Defines the number of times that test additional capacity can be activated for the record. A value of
-1 indicates that activation count is unlimited.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.148.0.*.*.*.*

z/VM virtual machine object

Z/VM virtual machine name bindings

z/VM virtual machine object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.x.x..*

Where x.x. equals the attribute identifier for the object and an * equals a unique number for that specific
instance of the z/VM virtual machine.

z/VM virtual machine attributes

Name
Get: This returns the name of the z/VM virtual machine object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.1.0.*

Parent name
Get (CPC Image’s name): This returns the name of the parent CPC Image object.
v Data type returned on Get: HWMCA_TYPE_OCTETSTRING
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.2.0.*

Status error
Get: This returns an indicator of whether the status of the z/VM virtual machine is acceptable.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a state which is not an acceptable status.

HWMCA_FALSE
Object is in an acceptable status state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.7.0.*

Busy
Get: This returns an indicator of whether the object is currently busy performing a user initiated task.
v Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object in a busy state (currently performing a task).

HWMCA_FALSE
Object not in a busy state.

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.8.0.*

140 Application Programming Interfaces

Status
Get: This returns a value representing the status of the z/VM virtual machine object.
v Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_LINKNOTACTIVE
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_LOGOFF_TIMEOUT
– HWMCA_STATUS_FORCED_SLEEP
– HWMCA_STATUS_STORAGE_EXCEEDED
– HWMCA_STATUS_UNKNOWN
– HWMCA_STATUS_IMAGE_NOT_OPERATING
– HWMCA_STATUS_IMAGE_NOT_ACTIVATED
– HWMCA_STATUS_IMAGE_NOT_CAPABLE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.10.0.*

Acceptable status
Get: This returns a value that represents the status values that are to be considered acceptable for the
z/VM virtual machine object.
v Data type returned on Get: HWMCA_TYPE_INTEGER
v Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:
– HWMCA_STATUS_OPERATING
– HWMCA_STATUS_NOT_ACTIVATED
– HWMCA_STATUS_LINKNOTACTIVE
– HWMCA_STATUS_NOT_OPERATING
– HWMCA_STATUS_LOGOFF_TIMEOUT
– HWMCA_STATUS_FORCED_SLEEP
– HWMCA_STATUS_STORAGE_EXCEEDED
– HWMCA_STATUS_UNKNOWN
– HWMCA_STATUS_IMAGE_NOT_OPERATING
– HWMCA_STATUS_IMAGE_NOT_ACTIVATED
– HWMCA_STATUS_IMAGE_NOT_CAPABLE

v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.11.0.*

Object type
Get: This returns the type of object the z/VM virtual machine object identifier represents.
v Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD
v SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.22.0.*.*

z/VM virtual machine commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Chapter 4. Console application managed objects 141

z/VM virtual machine notifications

Status change (HWMCA_EVENT_STATUS_CHANGE)
v An HWMCA_TYPE_INTEGER that specifies the new status value.
v An HWMCA_TYPE_INTEGER that specifies the old status value.

Object created (HWMCA_EVENT_CREATED)
This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)
This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)
v An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state

(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).
v An HWMCA_TYPE_INTEGER that specifies the status value for the object.

142 Application Programming Interfaces

Chapter 5. REXX management functions

ACTZSNMP
ACTZSNMP is a Dynamic Link Library (DLL) package of OS/2 REXX External Functions written in the
C language. The ACTZSNMP dynalink gives the REXX application equivalent function as an application
written in C.

Likewise, HWMCAORX is a Dynamic Link Library (DLL) package of 32- bit Windows Object REXX
External Functions written in the C language. The HWMCAORX dynalink gives the Object REXX
application equivalent function as an application written in C.

REXX initialization functions
RxHwmcaLoadFuncs

To use a REXX Management Function, you must first register the function with the REXX
RxFuncAdd function. The RxHwmcaLoadFuncs ACTZSNMP (HWMCAORX for Object REXX for
Windows) function automatically loads all the other REXX functions.

RxHwmcaDefineVars
The RxHwmcaDefineVars function can be called to define REXX variables with the same values
which exist for a C application. These variables are shown in “Constant definitions” on page 43 .

Note: An example of these functions is shown in “Data exchange APIs (REXX sample)” on page 167.

Data exchange functions
The purpose of the REXX Data Exchange Functions is to allow REXX applications, local or remote, the
ability to exchange data related to the objects that the Console application manages. Specifically, this
support will allow REXX applications to request the Console to:
v Query (Get/Get-Next) the attributes of objects
v Change (Set) certain attributes of objects
v Receive notification of significant events occurring to objects
v Generate enterprise-specific Simple Network Management Protocol traps for significant events

occurring to objects.

The REXX Data Exchange Functions interface to the Data Exchange APIs, which use the Simple Network
Management Protocol (SNMP), as the transport mechanism. The attributes of objects can be
queried/changed through the underlying SNMP Set, Get, Get-Next requests, while event notification is
accomplished through the use of the enterprise-specific SNMP Trap message.

The REXX External Functions provide the REXX programmer the same capability that exists for the Data
Exchange and Commands APIs.

Specifically, the set of REXX Data Exchange Functions consists of:

RxHwmcaInitialize
Used to perform some initialization tasks necessary for the remainder of the REXX Data
Exchange Functions set and the REXX Data Command Functions.

RxHwmcaGet
Used to perform a query or Get request for a specified object or object attribute.

© Copyright IBM Corp. 2000, 2013 143

RxHwmcaGetNext
Used to perform a query-next or Get-next request for an object or object attributes that occurs
next in the lexical sequence of objects managed by the Console.

RxHwmcaSet
Used to perform a change or Set request for a specified object attribute.

RxHwmcaWaitEvent
Used to wait for a specified period of time (or forever) for an event notification.

RxHwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs in the set.

RxHwmcaBuildId
A convenience routine that can be used to construct an object identifier for any object supported
by the Console.

RxHwmcaBuildAttributeId
A convenience routine that can be used to construct an attribute object identifier for any object
supported by the Console, based on the object identifier of the object itself.

Refer to the following pages for detailed information about these functions.

RxHwmcaInitialize
Used to perform any initialization tasks required in order for the remainder of the functions to operate
correctly. The parameters required for this function are:

INITVAR
Is REQUIRED to be present and MUST be coded as a stem variable. This variable defines all the
information that is required for the Data Exchange APIs to perform the initialization request. The
following tail parts of the stem variable must be initialized before the RxHwmcaInitialize function
is called:

INITVAR.TARGET
Must contain the host name or internet address for the target Data Exchange APIs.

INITVAR.COMMUNITY
The community name that is to be used for SNMP request made to the target Console.
(Refer to Chapter 6, “Configuring for the data exchange APIs,” on page 191 for more
information regarding the community name used in SNMP requests.)

INITVAR.EVENTMASK
If you are going to be using the RxHwmcaWaitEvent call, the EVENTMASK tail should
contain one or more of the events defined in “HwmcaInitialize” on page 5.

Note: Care should be used when trying to use the same INITVAR stem variable for
RxHwmcaWaitEvent calls in addition to the rest of the APIs in the set. Events associated
with a particular INITVAR stem variable will be queued until retrieved with
RxHwmcaWaitEvent or until another API, such as RxHwmcaGet, is called. Therefore,
making calls, such as RxHwmcaGet, will cause any queued events to be discarded and
lost.

When both RxHwmcaWaitEvent and other calls need to be made, an application should
perform two RxHwmcaInitialize calls using two distinct INITVAR stem variables. The
application can then use one of the INITVAR stem variables for only RxHwmcaWaitEvent
calls and the other INITVAR stem variable for the other API calls.

INITVAR.RESERVED
A reserved field and must be set to zero for the RxHwmcaInitialize function if the
HWMCA_QUALIFIER_SPECIFIED event mask flag is not specified n the
INITVAR.EVENTMASK field. If the HWMCA_QUALIFIER_SPECIFIED event mask flag
is specified, then this field should contain the name of a stem variable, such as

144 Application Programming Interfaces

'QUALDATA.', that provides additional event qualification information. This stem
variable should be specified in the following manner.

QUALDATA.0
Contains the number of event qualification information provided in the event
qualification stem variable.

QUALDATA.n.MASK
This field should be set to the event mask flag that is being qualified. Only one
event mask flag should be specified in this field. For example,
HWMCA_EVENT_OPSYS_MESSAGE should be specified when qualifying
operating system message event notifications.

QUALDATA.n.TYPE
This field is used to indicate the type of event qualification information being
provided. The following event qualification types are currently supported.

HWMCA_QUALIFIER_TYPE_NAME
This value is used to indicate that the event qualification data is the null
terminated name of the managed object, which is specified in the
QUALDATA.n.DATA variable. Event qualification information that
specifies this event qualification type can be used to limit event
notifications for the specified event mask to those associated with a
managed object with the specified name.

After a successful call to the RxHwmcaInitialize function this field should not be altered in any
way. If the same stem variable is reused for another RxHwmcaInitialize call after the
RxHwmcaTerminate call has been made, this field must be reset appropriately.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcaInitialize to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmcaInitialize call returns a return code value to the REXX application. This return code lets the
REXX application know if the initialization request was successfully delivered and processed by the
Hardware Management Console Application. A value defined by variable HWMCA_DE_NO_ERROR
indicates successful completion.

The stem variable defined for the RxHwmcaInitialize call should be left alone and other information will
be added by the RxHwmcaInitialize function. It is important that this information be left intact and
accessible, since it must be passed as a parameter on almost all of the calls.

RxHwmcaGet
Used to retrieve data associated with a specific object attribute. The parameters required for this call are:

INITVAR
The stem variable that was used on the RxHwmcaInitialize call.

OBJECTID
The object ID variable for which the data is to be retrieved. Refer to Chapter 4, “Console
application managed objects,” on page 75 for more information about the object identifiers that
the Console manages.

OUTPUT
Defines the stem variable which will contain the actual information returned by RxHwmcaGet
API. This parameter MUST be a stem variable and the information returned will be as follows:

OUTPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

Chapter 5. REXX management functions 145

OUTPUT.n.TYPE
Contains a value which defines the type of data contained in the DATA tail variable.
Possible values are:

HWMCA_TYPE_INTEGER
Represents a number value.

HWMCA_TYPE_OCTETSTRING
Represents a string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit Internet address in host byte order.

OUTPUT.n.DATA
Contains the actual data of the above type.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the RxHwmcaGet
to complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

The RxHwmcaGet call returns a return code value to the REXX application. This return code lets the REXX
application know if the get request was successfully delivered and processed by the Console application.
A value defined by variable HWMCA_DE_NO_ERROR indicates successful completion.

RxHwmcaGetNext
Used to retrieve the data associated with the object attribute that occurs next in the lexical sequence of
objects, based on a specified object identifier. The parameters specified for the call are identical to those
specified for the RxHwmcaGet call with two subtle differences.
1. The meaning of the OBJECTID variable is used as the base for the Get-Next operation, as opposed to

having its object data retrieved.
2. Two pairs of TYPE and DATA variables will be returned in the output stem variable. The first is the

object identifier string for the object whose data is being returned and the second is for the data itself.

RxHwmcaSet
The RxHwmcaSet call is used to change or set the data associated with a specific object attribute. The
parameters specified for the call are:

INITVAR
The stem variable that was used on the RxHwmcaInitialize call.

OBJECTID
Object identifier variable for which the data is to be set. Refer to Chapter 4, “Console application
managed objects,” on page 75 for more information about the object identifiers that the Console
manages.

DATATYPE
Type of data represented by the Data parameter. Possible values are represented by the variables
HWMCA_TYPE_INTEGER and HWMCA_TYPE_OCTETSTRING.

DATA Actual data that will be set in the object defined by OBJECTID. Refer to Chapter 4, “Console
application managed objects,” on page 75 for more information about the object identifiers that
the Console manages.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the RxHwmcaSet
to complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

146 Application Programming Interfaces

RxHwmcaWaitEvent
Used to wait for event notification for objects managed by the Console Application. The REXX
application specifies the events that it wants to receive through the use of the EVENTMASK tail variable
in the INITVAR variable. The parameters specified for this call are:

INITVAR
The stem variable that was used on the RxHwmcaInitialize call.

OUTPUT
Defines the stem variable which will contain the actual information returned by
RxHwmcaWaitEvent function. This parameter MUST be a stem variable and the information
returned will be as follows:

OUTPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

OUTPUT.n.TYPE
Contains a value which defines the type of data contained in the DATA tail variable.
Possible values are:

HWMCA_TYPE_INTEGER
Represents a number value.

HWMCA_TYPE_OCTESTRING
Represents a string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

OUTPUT.n.DATA
Contains the actual data of the above type.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcaWaitEvent to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmcaWaitEvent function returns a return code value to the REXX application. This return
code lets the REXX application know if any errors occurred while waiting for the event
notification. A value of HWMCA_DE_NO_ERROR indicates successful completion. A value of
HWMCA_DE_TIMEOUT indicates that no event notifications were present in the specified
timeout period.

On successful completion of the RxHwmcaWaitEvent function, the stem variable OUTPUT is
populated with a series of one or more occurrences of the TYPE and DATA tail variables.
v An OUTPUT.1.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.1.DATA that specifies

the object identifier of the object that the event notification pertains to,
v An OUTPUT.2.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.2.DATA that specifies

the event notification type for this event, and
v Any additional data for the event notification type, as specified below.

The additional data for each of the event notification types are:

HWMCA_EVENT_COMMAND_RESPONSE

Used to notify the REXX application of completion information for a command that has been
initiated through the use of the REXX Command function.

The additional data for this event consists of six occurrences of the OUTPUT stem variable
TYPE\DATA pair that describe the following:

Chapter 5. REXX management functions 147

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the command completed attribute of the target object for which this
command response event has been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.4.DATA that specifies
the object identifier of the command for which this command response event has been
generated.

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the command return code attribute of the target object for which this
command response event has been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the return code value to be used to determine the success or failure of the command request
that is associated with this command response event.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that specifies
the object identifier of the last command response attribute of the target object for which this
command response event has been generated.

6. An OUTPUT.8.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.8.DATA that specifies
whether or not this is the last HWMCA_EVENT_COMMAND_RESPONSE event that will be
issued for this command. A DATA value of HWMCA_TRUE indicates this event as the last,
while a value of HWMCA_FALSE indicates that more
HWMCA_EVENT_COMMAND_RESPONSE events will be forthcoming.

7. An OUTPUT.9.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.9.DATA that
specifies the name of the object that is associated with this command response event.

8. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the command correlator.

Note: This field will only be present if the command was invoked with a correlator specified.

HWMCA_EVENT_MESSAGE

Used to notify the REXX application that an object managed by the Console has a new or
refreshed message. This event is generated only for the base objects and not for copies of objects
within user defined groups.

This event is returned to the application when any combination of the following values is used in
the EVENTMASK tail of the INITVAR parameter of the RxHwmcaInitialize call:
v HWMCA_EVENT_MESSAGE
v HWMCA_EVENT_HARDWARE_MESSAGE
v HWMCA_EVENT_OPSYS_MESSAGE

If the HWMCA_EVENT_MESSAGE value is specified in the EVENTMASK tail of the INITVAR
parameter, then the application will be notified of both hardware and operating system message
events.

If only the HWMCA_EVENT_HARDWARE_MESSAGE or
HWMCA_EVENT_OPSYS_MESSAGE value is specified in the EVENTMASK tail of the
INITVAR parameter, then the application will be notified only of hardware or operating system
message events, respectively.

In addition, the HWMCA_EVENT_NO_REFRESH_MESSAGE value can be specified in
conjunction with the above values to control whether or not the application should be notified of
HWMCA_EVENT_MESSAGE events for refreshed messages. If the
HWMCA_EVENT_NO_REFRESH_MESSAGE value is specified in the EVENTMASK field of the
INITVAR parameter, then the application will not be notified of HWMCA_EVENT_MESSAGE
events for refreshed messages.

The additional data for this event can take on two different formats. The format being received
can be determined through examining the OUTPUT.4.TYPE/DATA pair. The remaining object
identifier/value pairs for each of the two formats follows:

148 Application Programming Interfaces

1. An OUTPUT.3.TYPE: of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the message type attribute of the object for which this message event
has been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies
whether the message is a hardware or operating system message
(HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE)
The remaining OUTPUT.n.TYPE/DATA for hardware messages
(HWMCA_HARDWARE_MESSAGE) is:
a. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that

specifies the object identifier of the message text attribute of the object for which this
message event has been generated.

b. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and a OUTPUT.6.DATA that
specifies the new or refreshed hardware message text.

c. An OUTPUT.7.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that
specifies the object identifier of the message refresh attribute of the object for which this
message event has been generated.

d. An OUTPUT.8.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.8.DATA that
specifies whether the message is a new (HWMCA_FALSE) or refresh message
(HWMCA_TRUE).

e. An OUTPUT.9.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.9.DATA that
specifies the time stamp of the new or refreshed hardware message.

f. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the names of the CPC Image object(s) associated with the object that generated the
new or refreshed hardware message. This HWMCA_TYPE_OCTETSTRING is a null
terminated, blank delimited list of the CPC Image name(s).
When receiving this event from a Support Element Console, this value contains the name(s)
of the CPC Images that are running on the CPC that the Support Element Console is
controlling.
When receiving this event from a Hardware Management Console, this value:
v Contains no CPC Image names for hardware messages for the Hardware Management

Console itself
v Contains no CPC Image names for Optical Network related hardware messages
v Contains the name(s) of the CPC Images that are running on the CPC that the hardware

message pertains to.
g. An OUTPUT.11.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.11.DATA

that specifies the name of the object that is associated with this event.
The remaining OUTPUT.n.TYPE/DATA for operating system messages
(HWMCA_OPSYS_MESSAGE) are:
a. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that

specifies the object identifier of the message text attribute of the object for which this
message event has been generated.

b. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the new or refreshed operating system message text.

Note: If the operating system message text contains multiple lines, then each additional
line is delimited from the next line with the character sequence of a carriage return (\r)
and a new line (\n).

c. An OUTPUT.7.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that
specifies the object identifier of the message identifier attribute of the object for which this
message event has been generated.

Chapter 5. REXX management functions 149

d. An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that
specifies the message identifier of the new operating system message.

e. An OUTPUT.9.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.9.DATA that
specifies the object identifier of the message date attribute of the object for which this
message event has been generated.

f. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the date of the new operating system message.

g. An OUTPUT.11.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.11.DATA that
specifies the object identifier of the message time attribute of the object for which this
message event has been generated

h. An OUTPUT.12.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.12.DATA
that specifies the time of the new operating system message.

i. An OUTPUT.13.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.13.DATA that
specifies the object identifier of the message alarm attribute of the object for which this
message event has been generated.

j. An OUTPUT.14.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.14.DATA that
specifies whether the new operating system message should cause the alarm to be sounded
(HWMCA_TRUE or HWMCA_FALSE).

k. An OUTPUT.15.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.15.DATA that
specifies the object identifier of the message priority attribute of the object for which this
message event has been generated.

l. An OUTPUT.16.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.16.DATA that
specifies whether the new operating system message is a priority message or not
(HWMCA_TRUE or HWMCA_FALSE).

m. An OUTPUT.17.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.17.DATA that
specifies the object identifier of the message held attribute of the object for which this
message event has been generated.

n. An OUTPUT.18.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.18.DATA that
specifies whether the new operating system message is a held message or not
(HWMCA_TRUE or HWMCA_FALSE).

o. An OUTPUT.19.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.19.DATA that
specifies the object identifier of the message prompt text attribute of the object for which
this message event has been generated.

p. An OUTPUT.20.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.20.DATA
that specifies the prompt text that should be associated with the new operating system
message or an HWMCA_TYPE_NULL indicating that there is no prompt text for this new
operating system message.

q. An OUTPUT.21.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.21.DATA that
specifies the object identifier of the message operating system name attribute of the object
for which this message event has been generated.

r. An OUTPUT.22.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.22.DATA that
specifies the operating system name that should be associated with the new operating
system message or an HWMCA_TYPE_NULL indicating that there is no operating system
name for this new operating system message.

s. An OUTPUT.23.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.23.DATA that
specifies the object identifier of the message refresh attribute of the object for which this
message event has been generated.

t. An OUTPUT.24.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.24.DATA that
specifies whether the message is a new (HWMCA_FALSE) or refresh message
(HWMCA_TRUE).

u. An OUTPUT.25.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.25.DATA
that specifies the name of the object that is associated with this event.

150 Application Programming Interfaces

HWMCA_EVENT_STATUS_CHANGE

Used to notify the REXX application that an object managed by the Console has changed status.
This event is generated only for the base objects and not for copies of objects within user defined
groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies

the object identifier of the status attribute of the object for which this status change event has
been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies
the new status value, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the status attribute of the object for which this status change event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the old status value.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_NAME_CHANGE

Used to notify the REXX application that an object managed by the Console has had a name
change. This event notification can be useful when a REXX application retains the object
identifiers for objects it is interested in, since the name of an object is used to build the unique
portion of the object identifier. This event is generated only for the base objects and not for copies
of objects within user-defined groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies

the object identifier of the name attribute of the object for which this name change event has
been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the new object name, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the name attribute of the object for which this name change event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the old object name.

HWMCA_EVENT_ACTIVATE_PROF_CHANGE

Used to notify the REXX application that an object managed by the Console has changed which
activation profile is associated with it.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies

the object identifier of the activation profile attribute of the object for which this activation
profile change event has been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the new activation profile name, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the activation profile attribute of the object for which this activation
profile change event has been generated.

Chapter 5. REXX management functions 151

4. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the old activation profile name.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_CREATED

Used to notify the REXX application that a new object managed by the Console has been defined
or instantiated.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_DESTROYED

Used to notify the REXX application that an object managed by the Console has been undefined.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_EXCEPTION_STATE

Used to notify the REXX application that an object managed by the Console has either entered
into or out of an exception state. An object is considered in an exception state when its status is
not considered acceptable as defined by the object’s acceptable status attribute. This event is
generated only for the base objects and not for copies of objects within user-defined groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies

the object identifier of the status error attribute of the object for which this exception state
event has been generated.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies
whether the object is entering into an exception state (HWMCA_TRUE) or leaving an
exception state (HWMCA_FALSE).

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the status attribute of the object for which this exception state event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the status value for the object.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_ENDED

Used to notify the REXX application that the Console application is ending.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_HARDWARE_MESSAGE_DELETE

Used to notify the REXX application that a hardware message associated with an object managed
by the Console application or the Console application itself has been deleted. This event is
generated only for the base objects and not for copies of objects within user-defined groups.

The additional data for this event consists of five OUTPUT stem variable TYPE/DATA pairs that
describe the following:

152 Application Programming Interfaces

1. An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies
that the message being deleted is a hardware message (HWMCA_HARDWARE_MESSAGE).

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the message text for the hardware message being deleted.

3. An OUTPUT.5.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.5.DATA that is always
set to HWMCA_FALSE for this event.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the time stamp of the hardware message being deleted.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the names of the CPC Image object(s) associated with the object for which the
hardware message is being deleted. This HWMCA_TYPE_OCTETSTRING is a null
terminated, blank delimited list of the CPC Image name(s).
When receiving this event from a Support Element Console, this value contains the name(s) of
the CPC Images that are running on the CPC that the Support Element Console is controlling.
When receiving this event from a Hardware Management Console, this value:
v Contains no CPC Image names for hardware messages for the Hardware Management

Console itself
v Contains no CPC Image names for Optical Network related hardware messages
v Contains the name(s) of the CPC Images that are running on the CPC that the hardware

message pertains to.
6. An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that

specifies the name of the object that is associated with this event.

HWMCA_EVENT_SECURITY_EVENT

Used to notify the REXX application that a security event has been logged.

The additional data for this event consists of three OUTPUT stem variable TYPE/DATA pairs that
describes the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that

specifies the time stamp of the security log.
2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that

specifies the text of the security log.
3. An OUTPUT.5.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.5.DATA that

specifies the name of the object that is associated with this event.

HWMCA_EVENT_CAPACITY_CHANGE

Used to notify the REXX application that the processing capacity for a Defined CPC object has
changed in some manner. The additional data for this event consists of two OUTPUT stem
variable TYPE/DATA pairs that describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies the

type of capacity change that occurred, using one of the following constants:
v HWMCA_CAPACITY_FENCED_BOOK A processor book has been fenced and is not longer

usable.
v HWMCA_CAPACITY_DEFECTIVE_PROCESSOR A processor has become defective.
v HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE A concurrent processor book

replacement has been performed.
v HWMCA_CAPACITY_CONCURRENT_BOOK_ADD A concurrent processor book addition

has been performed.
v HWMCA_CAPACITY_CHECK_STOP A processor has gone into a check stopped state.
v HWMCA_CAPACITY_CHANGES_ALLOWED A user has configured the APIs to be

allowed to perform capacity changes.

Chapter 5. REXX management functions 153

v HWMCA_CAPACITY_CHANGES_NOT_ALLOWED A user has configured the APIs to no
longer be allowed to perform capacity changes.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the name of the object that the event pertains to (in this case a Defined CPC object).

HWMCA_EVENT_CAPACITY_RECORD_CHANGE

Used to notify the REXX application that a change has occurred to a temporary capacity record.
The additional data for this event consists of three OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies the

type of capacity record change that occurred, using one of the following constants:
v HWMCA_CAPACITY_RECORD_ADD The capacity record has been added to the machine.
v HWMCA_CAPACITY_RECORD_DELTA The capacity record has been modified.
v HWMCA_CAPACITY_RECORD_DELETE The capacity record has been deleted.
v HWMCA_CAPACITY_RECORD_ACCOUNTING
v HWMCA_CAPACITY_ACTIVATION_LEVEL The capacity record has changed it's level of

activation (either more resources from this record have been added or removed from the
machine).

v HWMCA_CAPACITY_PRIORITY_PENDING Additional capacity has been added for the
capacity record, with priority, but not enough resources were available to allow for all the
capacity specified to be put into effect. As resources become available they will be added
for this record in order to completely satisfy the original request for additional capacity.

v HWMCA_CAPACITY_RECORD_OTHERThe capacity record has changed in some other
manner.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA for the
temporary capacity record that has changed.

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.5.DATA that
specifies the name of the object that the event pertains to (in this case a Defined CPC object).

HWMCA_EVENT_DISABLED_WAIT

Used to notify the REXX application that a CPC Image object has entered a disabled wait state.
The additional data for this event consists of six OUTPUT stem variable TYPE/DATA pairs that
describe the following:
1. An OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA for the

name of the Defined CPC that is associated with the CPC Image that entered a disabled wait
state.

2. An OUTPUT.4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA for the
disabled wait PSW value.

3. An OUTPUT.5.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.5.DATA for the partition
identifier of the CPC Image that entered a disabled wait state.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA for number of
the processor that entered a disabled wait state.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA for the
serial number of the Defined CPC that is associated with the CPC Image that entered a
disabled wait state.

6. An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that
specifies the name of the object that the event pertains to (in this case a CPC Image object).

TIMEOUT
Used to specify the amount of time that the REXX application waits for the RxHwmcaWaitEvent to
complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

154 Application Programming Interfaces

RxHwmcaTerminate
Used to perform any cleanup tasks required by any of the other REXX Data Exchange and Command
functions. The parameters required for this function are:

INITVAR
This parameter is the stem variable that was used on the RxHwmcaInitialize call.

TIMEOUT
This parameter is used to specify the amount of time that the REXX application wants to wait for
the RxHwmcaTerminate to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmcaTerminate call returns a return code value to the REXX application. This return code lets the
REXX application know if the termination request was successfully delivered and processed by the
Console application. A value defined by variable HWMCA_DE_NO_ERROR indicates successful
completion.

Once the RxHwmcaTerminate has successfully been called, the stem variable INITVAR, can be used for
other purposes.

RxHwmcaBuildId
A convenience routine provided to aid the application program in constructing an object identifier for any
object supported by the Console. The arguments specified for this API are:

BUFFER
A variable where the built object identifier string is to be placed.

PREFIX
The prefix string to be used for the object identifier to be built. Any of the valid prefixes defined
by the RxHwmcaDefineVars call can be used, such as:
v HWMCA_CONSOLE_ID
v HWMCA_CFG_CPC_GROUP_ID
v HWMCA_CFG_CPC_ID
v HWMCA_CPC_IMAGE_GROUP_ID
v HWMCA_CPC_IMAGE_ID
v HWMCA_GROUPS_GROUP_ID
v HWMCA_GROUPS_OBJECT_ID
v HWMCA_COMMAND_PREFIX
v HWMCA_ACT_RESET_OBJECT_ID
v HWMCA_ACT_IMAGE_OBJECT_ID
v HWMCA_ACT_LOAD_OBJECT_ID
v HWMCA_ACT_GROUP_OBJECT_ID
v HWMCA_CAPACITY_RECORD_OBJECT_ID
v HWMCA_CFG_VM_GROUP_ID
v HWMCA_VM_OBJECT_ID

ATTRIBUTE
The attribute suffix string to be used for the object identifier to be built. This can be omitted
when building an identifier for an object itself, as opposed to an attribute object identifier.

GROUPNAME
The group name to be used for building the object identifier. This can be omitted when building
an object identifier for a predefined group or an object contained in a predefined group.

OBJECTNAME
The object name to be used for building the object identifier. This can be omitted when building
an object identifier for a group object.

Chapter 5. REXX management functions 155

Note: Refer to “Console application object identifier conventions” on page 75 for more information about
the conventions used for the object identifiers for objects managed by the Console.

RxHwmcaBuildAttributeId
A convenience routine provided to aid the REXX programmer in constructing an attribute object identifier
for any object supported by the Console, based on the object identifier of the object itself. The parameters
specified for this API are:

BUFFER
A variable where the built object identifier string is to be placed.

OBJECTID
The object identifier of the object for which the attribute identifier is to be built.

ATTRIBUTE
The attribute suffix string to be used for the object identifier to be built.

Note: Refer to “Console application object identifier conventions” on page 75 for more information about
the conventions used for the object identifiers for objects managed by the Console.

Commands API

RxHwmcaCommand
Used to perform a command against a specific object managed by the Console Application. The
parameters specified for the call are:

INITVAR
The stem variable that was used on the RxHwmcaInitialize call.

OBJECTID
The object identifier variable for which the data is to be retrieved.

COMMANDID
A variable containing the command that is to be executed. Valid values for this argument are:
v HWMCA_ACTIVATE_COMMAND
v HWMCA_DEACTIVATE_COMMAND
v HWMCA_SEND_OPSYS_COMMAND
v HWMCA_RESETNORMAL_COMMAND
v HWMCA_START_COMMAND
v HWMCA_STOP_COMMAND
v HWMCA_PSWRESTART_COMMAND
v HWMCA_LOAD_COMMAND
v HWMCA_HW_MESSAGE_REFRESH_COMMAND
v HWMCA_RESETCLEAR_COMMAND
v HWMCA_HW_MESSAGE_DELETE_COMMAND
v HWMCA_ACTIVATE_CBU_COMMAND
v HWMCA_UNDO_CBU_COMMAND
v HWMCA_IMPORT_PROFILE_COMMAND
v HWMCA_EXPORT_PROFILE_COMMAND
v HWMCA_RESERVE_COMMAND
v HWMCA_EXTERNAL_INTERRUPT_COMMAND
v HWMCA_SCSI_LOAD_COMMAND
v HWMCA_SCSI_DUMP_COMMAND
v HWMCA_SHUTDOWN_RESTART_COMMAND
v HWMCA_ACTIVATE_OOCOD_COMMAND
v HWMCA_UNDO_OOCOD_COMMAND
v HWMCA_ADD_CAPACITY_COMMAND
v HWMCA_REMOVE_CAPACITY_COMMAND
v HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND

156 Application Programming Interfaces

v HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
v HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
v HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
v HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND

CMDINPUT
Defines the stem variable that contains the actual command used to represent the arguments to
be passed to the specified command.

CMDINPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

CMDINPUT.n.TYPE
Contains a value which defines the type of data contained in the DATA tail variable.

CMDINPUT.n.DATA
Contains the actual data of the above type.

The acceptable and required arguments for each command are as follows:

HWMCA_ACTIVATE_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Activation profile name
Name of the activation profile to be used for the Activate command. The
default is to use the profile name specified in the Activation profile name
attribute for the specified object.

Force indicator
An indicator used to request conditional processing of the Activate
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Either one or both of these arguments can be specified, meaning the
CMDINPUT.0 can be 0 - 2; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that
argument is used. In order to specify an argument, such that the default will be
used, the TYPE tail variable should be set to HWMCA_TYPE_NULL and the
DATA tail variable should be set to the null string (for example, "").

The default for any argument can be overridden by specifying the TYPE and
DATA tail variables as follows:

Activation profile name

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the Activation profile name.

Force indicator

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.2.DATA
Should contain HWMCA_TRUE for the command to be performed
unconditionally or HWMCA_FALSE for the command to be performed
conditionally.

Chapter 5. REXX management functions 157

HWMCA_DEACTIVATE_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE for
the command to be performed unconditionally or HWMCA_FALSE for the
command to be performed conditionally.

HWMCA_RESETNORMAL_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE for
the command to be performed unconditionally or HWMCA_FALSE for the
command to be performed conditionally.

HWMCA_RESETCLEAR_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMINPUT.1.DATA variable should contain the value HWMCA_TRUE for the
command to be performed unconditionally or HWMCA_FALSE for the command
to be performed conditionally.

HWMCA_START_COMMAND
No arguments are accepted or required.

HWMCA_STOP_COMMAND
No arguments are accepted or required.

HWMCA_PSWRESTART_COMMAND
No arguments are accepted or required.

HWMCA_SEND_OPSYS_COMMAND
This command requires two arguments. The first is an indication of whether this
is a priority operating system command and the second is the text of the
operating system command. This implies that the CMDINPUT.0 variable should
contain a 2. The first CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
HWMCA_TRUE for priority operating system commands or HWMCA_FALSE
for non-priority operating system commands. The second CMDINPUT.2.TYPE
variable should be set to HWMCA_TYPE_OCTETSTRING and the
CMDINPUT.2.DATA variable should contain the operating system command
itself.

HWMCA_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Load address
Hexadecimal address to be used when performing the Load. The default
will be to use the Load address last used when a Load was performed for
the object.

158 Application Programming Interfaces

Load parameter
Parameter string to be used when performing the Load. The default will
be to use the Load parameter last used when a Load was performed for
the object.

Clear indicator
Whether or not memory should be cleared before performing the Load.
The default is to clear memory before performing the Load.

Timeout
Amount of time (in seconds) to wait for the Load to complete. The
default timeout is 60 seconds.

Store status indicator
Whether or not status should be stored before performing the Load. The
default is not to store status before performing the Load.

Force indicator
An indicator used to request conditional processing of the Load
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.0 can be 0
- 6; however, they must be specified in the order shown by the preceding list. If
an argument is not specified, then the default for that argument is used. In order
to specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, "").

The default for any argument can be overridden by specifying the TYPE and
DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the Load.
This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
Load. This string must be less than or equal to 8 characters in length.

Clear indicator

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.3.DATA
Should contain the value HWMCA_TRUE for memory to be cleared
before performing the Load or HWMCA_FALSE to bypass the clearing of
memory before performing the Load.

Timeout

Chapter 5. REXX management functions 159

CMDINPUT.4.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.4.DATA
Should contain the timeout value that is to be used when performing the
Load. This value must be 60 - 600 seconds.

Store status indicator

CMDINPUT.5.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.5.DATA
Should contain the value HWMCA_TRUE for status to be stored before
performing the Load or HWMCA_FALSE to bypass the storing of status
before performing the Load.

Force indicator

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.6.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally.

HWMCA_HW_MESSAGE_REFRESH_COMMAND
No arguments are accepted or required.

HWMCA_HW_MESSAGE_DELETE_COMMAND
This command requires one argument, which is the time stamp of the hardware
message. This implies that the CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_OCTETSTRING
and the CMDINPUT.1.DATA variable should contain the hardware message time
stamp string itself.

HWMCA_ACTIVATE_CBU_COMMAND
This command requires one argument, which is an indicator of whether a real or
test CBU activation should be performed. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
the value HWMCA_TRUE for a real CBU activation or HWMCA_FALSE for a test
CBU activation. A second, optional, parameter for the password used to validate
the CBU activation can be specified with a CMDINPUT.2.TYPE set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.2.DATA variable set to the
desired password. If not specified, the password will be obtained automatically
from the IBM support system.

HWMCA_UNDO_CBU_COMMAND
No arguments are accepted or required.

HWMCA_IMPORT_PROFILE_COMMAND
This command requires one argument, which is the profile area to be imported.
This implies that the CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain an integer value greater than or
equal to 1 or less than or equal to 4, indicating the profile area to be imported.

HWMCA_EXPORT_PROFILE_COMMAND
This command requires one argument, which is the profile area to be exported.
This implies that the CMDINPUT.0 variable should contain a 1. The

160 Application Programming Interfaces

CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain an integer value greater than or
equal to 1 or less than or equal to 4, indicating the profile area to be exported.

HWMCA_RESERVE_COMMAND

Note: This command is available only on a Support Element console.

This command requires two arguments. The first is the request/release indicator
and the second is the name of the application requesting the reserve (exclusive
control). This implies that the CMDINPUT.0 variable should contain a 2. The first
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE
when requesting the reserve or HWMCA_FALSE when releasing the reserve. The
second CMDINPUT.2.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.2.DATA variable should
contain the application name. This length of the application name must be less
than or equal to 8.

HWMCA_EXTERNAL_INTERRUPT_COMMAND
This command requires one argument, which is the number of the processor that
is the target of the external interrupt command. This implies that the
CMDINPUT.0 variable should contain a 1. The CMDINPUT.1.TYPE variable
should be set to HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA.
variable should contain the processor number. This number is between 0 and the
maximum number of processors for the target CPC image object.

HWMCA_SCSI_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Load address
Hexadecimal address to be used when performing the SCSI Load. The
default will be to use the Load address last used when a SCSI Load was
performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Load. The default
will be to use the Load parameter last used when a SCSI Load was
performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Load. The
default will be to use the worldwide port name last used when a SCSI
Load was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Load. The default
will be to use the logical unit number last used when a SCSI Load was
performed for the object.

Boot Program Selector
The boot program selector to be used for the SCSI Load. The default will
be to use the boot program selector last used when a SCSI Load was
performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI
Load. The default will be to use the operating system specific load
parameters last used when a SCSI Load was performed for the object.

Chapter 5. REXX management functions 161

Boot record logical block address
The boot record logical block address to be used for the SCSI Load. The
default will be to use the boot record logical block address last used
when a SCSI Load was performed for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Load
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.0 can be 0 -
8; however, they must be specified in the order shown by the preceding list. If an
argument is not specified, then the default for that argument is used. In order to
specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, ""). The default for any argument can be
overridden by specifying the TYPE and DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the SCSI
Load. This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
SCSI Load. This string must have a length of eight characters or less.

Worldwide port name

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should contain the worldwide port name string to be used when
performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Logical unit number

CMDINPUT.4.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.4.DATA
Should contain the logical unit number string to be used when
performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Disk Partition Identifier

CMDINPUT.5.TYPE
Should be set to HWMCA_TYPE_INTEGER.

162 Application Programming Interfaces

CMDINPUT.5.DATA
Should contain the boot program selector value, which can be in the
range 0 - 30, inclusive.

Operating system specific load parameters

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.6.DATA
Should contain the operating system specific parameters string to be used
when performing the SCSI Load. This string must be 256 characters or
less.

Boot record logical block address

CMDINPUT.7.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.7.DATA
Should contain the boot record logical block address string to be used
when performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Force indicator

CMDINPUT.8.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.8.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

HWMCA_SCSI_DUMP_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Load address
Hexadecimal address to be used when performing the SCSI Dump. The
default will be to use the Load address last used when a SCSI Dump was
performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Dump. The
default will be to use the Load parameter last used when a SCSI Dump
was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Dump. The
default will be to use the worldwide port name last used when a SCSI
Dump was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Dump. The
default will be to use the logical unit number last used when a SCSI
Dump was performed for the object.

Boot Program Selector
The boot program selector to be used for the SCSI Dump. The default
will be to use the boot program selector last used when a SCSI Dump
was performed for the object.

Chapter 5. REXX management functions 163

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI
Dump. The default will be to use the operating system specific load
parameters last used when a SCSI Dump was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Dump. The
default will be to use the boot record logical block address last used
when a SCSI Dump was performed for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Dump
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.0 can be 0 -
8; however, they must be specified in the order shown by the preceding list. If an
argument is not specified, then the default for that argument is used. In order to
specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, ""). The default for any argument can be
overridden by specifying the TYPE and DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the SCSI
Dump. This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
SCSI Dump. This string must have a length of 8 characters or less.

Worldwide port name

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should contain the worldwide port name string to be used when
performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Logical unit number

CMDINPUT.4.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.4.DATA
Should contain the logical unit number string to be used when
performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Disk Partition Identifier

164 Application Programming Interfaces

CMDINPUT.5.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.5.DATA
Should contain the boot program selector value, which can be in the
range 0 - 30, inclusive.

Operating system specific load parameters

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.6.DATA
Should contain the operating system specific parameters string to be used
when performing the SCSI Dump. This string must be 256 characters or
less.

Boot record logical block address

CMDINPUT.7.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.7.DATA
Should contain the boot record logical block address string to be used
when performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Force indicator

CMDINPUT.8.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.8.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

HWMCA_SHUTDOWN_RESTART_COMMAND
This command requires one argument, which is an indicator of the type of
shutdown or restart to be performed. This implies that the CMDINPUT.0 variable
should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
one of the following values.

HWMCA_RESTART_APPLICATION
Used to indicate the Console application is to be restarted.

HWMCA_RESTART_CONSOLE
Used to indicate the Console is to be restarted.

HWMCA_SHUTDOWN_CONSOLE
Used to indicate the Console is to be shutdown/powered off.

HWMCA_RESTART_APPLICATION_ALTERNATE
Used to indicate the Alternate Support Element Console application is to
be restarted. This option is only valid for the Support Element Console.

HWMCA_RESTART_CONSOLE_ALTERNATE
Used to indicate the Alternate Support Element Console is to be restarted.
This option is only valid for the Support Element Console.

Chapter 5. REXX management functions 165

HWMCA_SHUTDOWN_CONSOLE_ALTERNATE
Used to indicate the Alternate Support Element Console is to be
shutdown/powered off. This option is only valid for the Support Element
Console.

HWMCA_ACTIVATE_OOCOD_COMMAND
This command requires one argument, which is the order number of the On/Off
Capacity on Demand (On/Off CoD) record to be activated. This implies that the
CMDINPUT.0 variable should contain a 1. The CMDINPUT.1.TYPE variable
should be set to HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA
variable should contain the On/Off CoD order number to be activated.

HWMCA_UNDO_OOCOD_COMMAND
No arguments are accepted or required.

HWMCA_ADD_CAPACITY_COMMAND
This command requires one argument, which is an XML string describing the
parameters to be used for capacity addition. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA variable should
contain XML string for these parameters.

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed
description of this XML data.

HWMCA_REMOVE_CAPACITY_COMMAND
This command requires one argument, which is an XML string describing the
parameters to be used for capacity removal. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA variable should
contain XML string for these parameters.

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a detailed
description of this XML data.

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the current STP identifier for
the Defined CPC object.

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
This command requires the following arguments:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain a string representing the current STP identifier for
the Defined CPC object.

Force Indicator

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_INTEGER.

166 Application Programming Interfaces

CMDINPUT.2.DATA
A pointer to a field containing the value HWMCA_TRUE for the
command to be performed unconditionally or HWMCA_FALSE
for the command to be performed conditionally based on the
state of the target object.

STP Configuration XML

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should be an XML fragment describing the configuration for the
STP-only CTN.

Note: Refer to Appendix F, “XML descriptions,” on page 219 for a
detailed description of this XML data.

HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the desired STP identifier for
the Defined CPC object and all CPCs that are members of the
same STP-only CTN

HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_ COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the desired STP identifier for
the Defined CPC object.

HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND
No arguments are accepted or required.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcaCommand to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

Data exchange APIs (REXX sample)
This section shows an example REXX command file using the Console Data Exchange APIs and
Commands API. The most up to date copy of this code is available on Resource Link at
http://www.ibm.com/servers/resourcelink. Click Services, and then Click API.

Chapter 5. REXX management functions 167

/**/
/* Rexx command file used to illustrate the use of the Hardware */
/* Management Console APIs. This sample will allow the user to see */
/* the objects that can be managed from the Hardware Management */
/* Console, as well as perform tasks against these objects. */
/**/
trace ’o’;

/**/
/* Number of seconds that this Rexx sample will wait for API calls */
/* to complete. This may need to be changed for remote networks */
/* that require more time to return the responses. */
/**/
api_timeout_secs = 30;
api_timeout = api_timeout_secs * 1000;

/**/
/* Parse the provided arguments. No arguments are required, since */
/* we will prompt the user for them. However, they can be passed */
/* as follows: */
/* Argument #1 - target HMC’s hostname or internet address */
/* Argument #2 - target HMC’s SNMP community name for API request*/
/**/
parse arg INITBLK.TARGET INITBLK.COMMUNITY .;
’@echo off’

error = 0;
/**/
/* Load the OS/2 Rexx Utility functions DLL. */
/**/
if RxFuncQuery(’SysLoadFuncs’) then do

if rxfuncadd(’SysLoadFuncs’, ’RexxUtil’, ’SysLoadFuncs’) then do
say ’Error trying to add OS/2 Rexx utility functions.’;
error = 98;

end /* Do */
end /* Do */
/**/
/* Load the Hwmca Rexx API interface function DLL. */
/**/
if RxFuncQuery(’RxHwmcaLoadFuncs’) then do

if rxfuncadd(’RxHwmcaLoadFuncs’, ’ACTZSNMP’, ’RxHwmcaLoadFuncs’) then do
say ’Error trying to add the Hardware Management Console API Rexx functions.’;
error = 99;

end /* Do */
end /* Do */
if error == 0 then do

call SysLoadFuncs /* Load Rexx utility functions */
call RxHwmcaLoadFuncs; /* Load HMC API functions */
call RxHwmcaDefineVars; /* Define HMC API variables */
/***/
/* Prompt the user for the HMC hostname or internet address. */
/***/
if INITBLK.TARGET = ’’ then do

say ’ ’;
say ’Please enter target Hardware Management Console hostname or internet address.’;

168 Application Programming Interfaces

pull INITBLK.TARGET .;
end /* Do */
/***/
/* Prompt the user for the HMC community name to use. */
/***/
if INITBLK.COMMUNITY = ’’ then do

say ’ ’;
say ’Please enter community name for target Hardware Management Console.’;
parse pull INITBLK.COMMUNITY .;

end /* Do */
/***/
/* This sample uses the same Initialization block, INITBLK, for */
/* all RxHwmca API calls. */
/***/
INITBLK.EVENTMASK = HWMCA_EVENT_COMMAND_RESPONSE;
/***/
/* Initialize ourselves with the HMC and tell it that we are only*/
/* interested in command response events. */
/***/
rc = RxHwmcaInitialize(’INITBLK.’,api_timeout);
if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Get the size of the screen so we know how much room we */
/* have for outputting information. */
/**/
parse value SysTextScreenSize() with screen_rows screen_cols;
/**/
/* We are now successfully initialized with the HMC. First, */
/* lets get the name of the HMC. */
/**/
call get_hmc_name;
nest = 0;
bailout = 0;
/**/
/* Now we need to request the list of groups and present this */
/* to the user. */
/**/
if result <> ’’then call show_contents HWMCA_CONSOLE_ID ’Groups’;
/**/
/* Terminate our session with the HMC, so that it does not */
/* try and send us any more events. */
/**/
rc = RxHwmcaTerminate(’INITBLK.’,api_timeout);
call SysCls;

end /* do */
else do

say ’Error’ rc ’on RxHwmcaInitialize call.’;
end /* do */

end /* Do */
exit

/**/
/* Subroutine: get_hmc_name */
/* */
/* This subroutine will request name attribute for the HMC. */
/**/
get_hmc_name:

hmc_name = get_name(HWMCA_CONSOLE_ID);
return hmc_name;

Chapter 5. REXX management functions 169

/**/
/* Subroutine: show_contents */
/* */
/* This subroutine will get the contents attribute for the passed */
/* in object and display the results to the user. Note that */
/* returned contents can be groups themselves or objects, such as */
/* CPCs or CPC Images. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */
/**/
show_contents: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_NAME_SUFFIX hmc_name screen_cols,
HWMCA_GROUP_CONTENTS_SUFFIX,
HWMCA_CONSOLE_ID nest bailout,
HWMCA_OBJECT_TYPE_SUFFIX,
HWMCA_STATUS_SUFFIX,
HWMCA_STATUS_ERROR_SUFFIX,
HWMCA_EXPECTED_STATUS_SUFFIX,
HWMCA_ACTIVATION_PROFILE_SUFFIX,
HWMCA_LAST_ACT_PROFILE_SUFFIX,
HWMCA_IP_ADDRESS_SUFFIX,
HWMCA_SNA_ADDRESS_SUFFIX,
HWMCA_MODEL_SUFFIX,
HWMCA_TYPE_SUFFIX,
HWMCA_MACHINE_SERIAL_SUFFIX,
HWMCA_CPC_SERIAL_SUFFIX,
HWMCA_CPC_ID_SUFFIX,
HWMCA_OPSYS_NAME_SUFFIX,
HWMCA_SYSPLEX_NAME_SUFFIX,
HWMCA_ACT_RESET_LIST_SUFFIX,
HWMCA_ACT_IMAGE_LIST_SUFFIX,
HWMCA_ACT_LOAD_LIST_SUFFIX,
HWMCA_ACT_PROFILE_IOCDS_SUFFIX,
HWMCA_ACT_PROFILE_IPLADDR_SUFFIX,
HWMCA_ACT_PROFILE_IPLPARM_SUFFIX,
HWMCA_CPC_OBJECT,
HWMCA_CPC_IMAGE_OBJECT,
HWMCA_CF_OBJECT,
HWMCA_INFINITE_WAIT,
HWMCA_TYPE_INTEGER,
HWMCA_TYPE_OCTETSTRING,
HWMCA_TRUE,
HWMCA_FALSE,
HWMCA_DE_TIMEOUT,
HWMCA_EVENT_COMMAND_RESPONSE,
HWMCA_ACTIVATE_COMMAND,
HWMCA_DEACTIVATE_COMMAND,
HWMCA_SEND_OPSYS_COMMAND,
HWMCA_RESETNORMAL_COMMAND,
HWMCA_RESETCLEAR_COMMAND,
HWMCA_START_COMMAND,
HWMCA_STOP_COMMAND,
HWMCA_LOAD_COMMAND,
HWMCA_PSWRESTART_COMMAND,
HWMCA_STATUS_OPERATING,
HWMCA_STATUS_NOT_OPERATING,
HWMCA_STATUS_NO_POWER,
HWMCA_STATUS_NOT_ACTIVATED,
HWMCA_STATUS_EXCEPTIONS,
HWMCA_STATUS_STATUS_CHECK,
HWMCA_STATUS_SERVICE,
HWMCA_STATUS_LINKNOTACTIVE,
HWMCA_STATUS_POWERSAVE;

170 Application Programming Interfaces

parse arg object_id view_name;

/**/
/* Setup the string equivalents for the status values that the HMC */
/* APIs will return. */
/**/
status. = ’Error getting the status attribute.’;
status.HWMCA_STATUS_OPERATING = ’Operating’;
status.HWMCA_STATUS_NOT_OPERATING = ’Not operating’;
status.HWMCA_STATUS_NO_POWER = ’No power’;
status.HWMCA_STATUS_NOT_ACTIVATED = ’Not activated’;
status.HWMCA_STATUS_EXCEPTIONS = ’Exceptions’;
status.HWMCA_STATUS_STATUS_CHECK = ’Status check’;
status.HWMCA_STATUS_SERVICE = ’Service’;
status.HWMCA_STATUS_LINKNOTACTIVE = ’Communications not active’;
status.HWMCA_STATUS_POWERSAVE = ’Power save’;
/**/
/* Setup the string equivalents for the status error values that */
/* the HMC APIs will return. */
/**/
status_error. = ’’;
status_error.HWMCA_TRUE = ’Contains object(s) in unacceptable states’;
status_error.HWMCA_FALSE = ’All objects in acceptable states’;
errmsg = ’’;
nest = nest + 1;
rc = HWMCA_DE_NO_ERROR;
/**/
/* Loop until the user selects RETURN or EXIT, or until an error */
/* occurred. We will refresh the data each time the loop is taken. */
/**/
do while rc == HWMCA_DE_NO_ERROR & bailout == 0

call SysCls;
/***/
/* Build the object identifier for the object contents. */
/***/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_GROUP_CONTENTS_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_GROUP_CONTENTS_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Get the object contents. */
/**/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

objects.id. = ’’; objects.name. = ’’;
objects.type. = ’’; objects.status = ’’;
objects.0 = 0;
cpcs_found = 0;
/***/
/* Loop through all of the objects returned and get the */
/* name, type, and status or status error attributes. This */
/* is the information that we will present to the user. */
/***/
do i = 1 to words(OUTPUT.1.DATA) while rc == 0;

objects.0 = objects.0 + 1;
objects.id.i = word(OUTPUT.1.DATA,i);
/**/
/* Get the object’s name attribute. */
/**/

Chapter 5. REXX management functions 171

objects.name.i = get_name(objects.id.i);
if objects.name.i == ’’ then do

say ’Error getting the object name attribute.’;
end /* do */
/**/
/* Get the object’s type attribute. */
/**/
objects.type.i = get_type(objects.id.i);
select

when objects.type.i == ’’ then do
say ’Error getting the object type attribute.’;
get_status = 0;

end /* do */
when objects.type.i == HWMCA_CPC_OBJECT then do

cpcs_found = 1;
get_status = 1;

end /* Do */
when objects.type.i == HWMCA_CF_OBJECT |,

objects.type.i == HWMCA_CPC_IMAGE_OBJECT then do
objects.name.i = translate(objects.name.i,’:’,’ ’);
get_status = 1;

end /* do */
otherwise get_status = 2;

end /* select */
if get_status == 2 then do

/***/
/* Get the object’s status error attribute. */
/***/
x = get_status_error(objects.id.i);
objects.status.i = status_error.x;

end /* Do */
else do

if get_status == 1 then do
/**/
/* Get the object’s status attribute. */
/**/
x = get_status(objects.id.i);
objects.status.i = status.x;

end /* Do */
end /* Do */

end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Everything is still ok, so lets build the screen for */
/* the user.First, lets display the title and some text */
/* that tells the user what to do. */
/**/
say center(hmc_name||’ - ’||view_name||’ Work Area’,screen_cols);
say ’Please type a number to select a target and press the specified’;
say ’function key to perform the desired task.’;
say;
/**/
/* Now lets display each object with its name and */
/* status values. */
/**/
do i = 1 to objects.0 while rc == 0;

say right(i,3)||’. ’||left(objects.name.i,17)||’ - ’||objects.status.i;
end /* do */
say;

172 Application Programming Interfaces

/**/
/* Let’s determine which set of functions key */
/* definitions to use depending on whether or not we */
/* are looking at groups, CPCs, or CPC Images. */
/**/
profile. = ’’;
command. = ’’;
command.2 = ’REFRESH’;
command.3 = ’EXIT’;
command.12 = ’RETURN’;
if nest > 1 then do

/***/
/* We are looking at "real" objects, not just a list */
/* of group objects. The Activate and Deactivate */
/* tasks are valid for all types of "real" objects. */
/***/
command.5 = HWMCA_ACTIVATE_COMMAND;
command.6 = HWMCA_DEACTIVATE_COMMAND;
command.7 = ’DETAILS’;
if cpcs_found == 1 then do

/**/
/* It is a list of CPC objects, so the only tasks */
/* the user can do is Activate, Deactivate and */
/* Details. */
/**/
say ’F1= F2=Refresh F3=Exit F4 = F5 =Activate F6=Deactivate’;
say ’F7=Details F8=Reset Prof F9=Image Prof F10=Load Prof F11= F12=Return’;
command.8 = ’PROFILES’;
command.9 = ’PROFILES’;
command.10 = ’PROFILES’;
profile.8 = ’RESET’;
profile.9 = ’IMAGE’;
profile.10 = ’LOAD’;

end /* Do */
else do

/**/
/* It is a list of CPC Image and/or CF objects, */
/* so let’s allow the user to do almost anything. */
/**/
say ’F1=Load F2=Refresh F3=Exit F4 =OpSys Cmd F5 =Activate F6 =Deactivate’;
say ’F7=Details F8=Reset F9=Start F10=Stop F11=PSW Restart F12=Return’;
command.1 = HWMCA_LOAD_COMMAND;
command.4 = HWMCA_SEND_OPSYS_COMMAND;
command.8 = HWMCA_RESETNORMAL_COMMAND;
command.9 = HWMCA_START_COMMAND;
command.10 = HWMCA_STOP_COMMAND;
command.11 = HWMCA_PSWRESTART_COMMAND;

end /* Do */
end /* do */
else do

/***/
/* We are looking at a list of groups, so we will */
/* only let the user open the group to see its */
/* contents. */
/***/
command.7 = ’OPEN’;
say ’F1= F2=Refresh F3=Exit F4 = F5 = F6 =’;
say ’F7=Open F8= F9= F10= F11= F12=Return’;

end /* do */

Chapter 5. REXX management functions 173

/**/
/* If there is an error message, then display it and */
/* beep! */
/**/
say errmsg;
if errmsg <> ’’ then do

errmsg = ’’;
call beep 523,250;

end /* Do */
call charout , ’====> ’;
/**/
/* Allow the user to type a number(s) to select the */
/* target for the request and check for function keys */
/* to see what task to perform. */
/**/
fkey = ’’; request = ’’;
do while fkey == ’’

key = SysGetKey(’NOECHO’);
keynum = c2d(key);
select

when keynum == 0 then do /* Function key */
key = SysGetKey(’NOECHO’);
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;

end /* Do */
when keynum == 13 then fkey = 2; /* Enter key */
when keynum == 27 then fkey = 3; /* Esc key */
otherwise do

request = request||key;
call charout ,key;

end /* do */
end /* select */

end /* do */
/**/
/* One of the functions keys or Enter has been pressed */
/* by the user, so let figure out what to do. */
/**/
select

when command.fkey == ’REFRESH’ then nop; /* Refresh */
when command.fkey == ’EXIT’ then do /* Exit */

bailout = 1;
leave;

end /* Do */
when command.fkey == ’RETURN’ then leave; /* Return */
/***/
/* The user select to open the contents for a group. */
/* Check to make sure that they entered the number of*/
/* the group to open and then call show_contents to */
/* display the contents of the group. */
/***/
when command.fkey == ’OPEN’ then do

if datatype(request) == ’NUM’ then do
if request >= 1 & request <= objects.0 then do

call show_contents objects.id.request,
objects.name.request;

end /* Do */
else do

errmsg = ’Input number is out of range.’;
end /* Do */

end /* Do */

174 Application Programming Interfaces

else do
errmsg = ’Input is not a valid number.’;

end /* Do */
end /* Do */
/***/
/* The user select to display the details for an */
/* object. Check to make sure that they entered the */
/* number of the object and then call show_details */
/* to display the details for the object. */
/***/
when command.fkey == ’DETAILS’ then do

if datatype(request) == ’NUM’ then do
if request >= 1 & request <= objects.0 then do

call show_details objects.id.request,
objects.type.request,
objects.name.request,
objects.status.request,
’(’||view_name||’)’;

end /* Do */
else do

errmsg = ’Input number is out of range.’;
end /* Do */

end /* Do */
else do

errmsg = ’Input is not a valid number.’;
end /* Do */

end /* Do */
/***/
/* The user select to display a list of activation */
/* profiles. Check to make sure that they entered */
/* the number of the object and then call */
/* show_profiles to see the list of profiles. */
/***/
when command.fkey == ’PROFILES’ then do

if datatype(request) == ’NUM’ then do
if request >= 1 & request <= objects.0 then do

if profile.fkey <> ’’ then do
call show_profiles profile.fkey,

objects.id.request,
objects.type.request,
objects.name.request,
objects.status.request,
’(’||view_name||’)’;

end /* do */
else do

errmsg = ’Invalid profile type specified.’;
end /* do */

end /* Do */
else do

errmsg = ’Input number is out of range.’;
end /* Do */

end /* Do */
else do

errmsg = ’Input is not a valid number.’;
end /* Do */

end /* Do */
/***/
/* Make sure the user pressed a defined function key.*/
/* If they did, then after making sure they entered */
/* a valid number for the target object, call */
/* perform_command to execute the specified task. */
/***/

Chapter 5. REXX management functions 175

otherwise do
if command.fkey <> ’’ then do

if datatype(request) == ’NUM’ then do
if request >= 1 & request <= objects.0 then do

call perform_command command.fkey,
objects.id.request,
objects.type.request,
objects.name.request;

errmsg = result;
end /* Do */
else do

errmsg = ’Input number is out of range.’;
end /* Do */

end /* Do */
else do

errmsg = ’Input is not a valid number.’;
end /* Do */

end /* Do */
else do

errmsg = ’Undefined function key pressed.’;
end /* Do */

end /* Do */
end /* select */

end /* do */
end /* do */
else do

say ’Error’ rc ’on RxHwmcaGet for the object contents attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for the object contents attribute.’;
end /* do */

end /* do */
nest = nest - 1;

return rc;
/**/
/* Subroutine: show_profiles */
/* */
/* This subroutine will request display a list of activation */
/* profiles for a CPC object. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */
/**/
show_profiles: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

hmc_name screen_cols bailout,
HWMCA_NAME_SUFFIX,
HWMCA_ACT_RESET_LIST_SUFFIX,
HWMCA_ACT_IMAGE_LIST_SUFFIX,
HWMCA_ACT_LOAD_LIST_SUFFIX,
HWMCA_ACT_PROFILE_IOCDS_SUFFIX,
HWMCA_ACT_PROFILE_IPLADDR_SUFFIX,
HWMCA_ACT_PROFILE_IPLPARM_SUFFIX,

parse arg proftype object_id object_type object_name object_status ’(’ group ’)’ .;

/**/
/* Setup an array of the suffix values for the attributes that we */
/* need to get for the details display. Note that this array is */
/* different for CPCs and CPC Image/CF objects. */
/**/

176 Application Programming Interfaces

profiletype.=’’;
profiletype.1 = ’Reset’;
profiletype.2 = ’Image’;
profiletype.3 = ’Load’;
suffix.=’’;
suffix.0 = 3;
suffix.1 = HWMCA_ACT_RESET_LIST_SUFFIX;
suffix.1.0 = 2;
suffix.1.1 = HWMCA_NAME_SUFFIX;
suffix.1.2 = HWMCA_ACT_PROFILE_IOCDS_SUFFIX;
suffix.2 = HWMCA_ACT_IMAGE_LIST_SUFFIX;
suffix.2.0 = 3;
suffix.2.1 = HWMCA_NAME_SUFFIX;
suffix.2.2 = HWMCA_ACT_PROFILE_IPLADDR_SUFFIX;
suffix.2.3 = HWMCA_ACT_PROFILE_IPLPARM_SUFFIX;
suffix.3 = HWMCA_ACT_LOAD_LIST_SUFFIX;
suffix.3.0 = 3;
suffix.3.1 = HWMCA_NAME_SUFFIX;
suffix.3.2 = HWMCA_ACT_PROFILE_IPLADDR_SUFFIX;
suffix.3.3 = HWMCA_ACT_PROFILE_IPLPARM_SUFFIX;
rc = HWMCA_DE_NO_ERROR;
/**/
/* Loop until the user selects RETURN or EXIT, or until an error */
/* occurred. We will refresh the data each time the loop is taken. */
/**/
do while rc == HWMCA_DE_NO_ERROR & bailout == 0

call SysCls;
list. = ’’;
field. = ’’;
select

when proftype == ’RESET’ then i = 1;
when proftype == ’IMAGE’ then i = 2;
when proftype == ’LOAD’ then i = 3;
otherwise i = 0;

end /* select */
if i <> 0 then do

/***/
/* Call get_attribute to get each of the attributes need for the */
/* profile list display. */
/***/
/* do i = 1 to suffix.0; */

list.i = get_attribute(object_id suffix.i);
do j = 1 to words(list.i);

profile_id = word(list.i,j);
do k = 1 to suffix.i.0

field.i.j.k = get_attribute(profile_id suffix.i.k);
end /* do */

end /* do */
/* end */ /* do */
/***/
/* Display the details title. */
/***/
say center(hmc_name||’ - ’||object_name||’ ’||profiletype.i||’ Profile List’,screen_cols);
/***/
/* Now build the lines of activation profile information that */
/* are to be displayed. */
/***/
/* do i = 1 to suffix.0; */

do j = 1 to words(list.i);
select

when profiletype.i == ’Reset’ then do

Chapter 5. REXX management functions 177

if field.i.j.2 == ’’ then field.i.j.2 = ’Use Active IOCDS’;
say left(field.i.j.1,16)||,

’ - IOCDS: ’||field.i.j.2
end /* do */
when (profiletype.i == ’Image’) | (profiletype.i == ’Load’) then do

if field.i.j.2 == ’’ then field.i.j.2 = ’Dynamic’;
else field.i.j.2 = right(field.i.j.2,4,’0’)||’ ’;
if field.i.j.3 == ’’ then field.i.j.3 = ’Dynamic’;
say left(field.i.j.1,16)||,

’ - Load address: ’||field.i.j.2||,
’ Load parameter: [’||field.i.j.3||’]’;

end /* do */
otherwise nop;

end /* select */
end /* do */

/* end */ /* do */
/***/
/* Display the valid function keys...nothing much allowed here */
/* except for return/exit or refresh. */
/***/
say;
say ’F1= F2=Refresh F3=Exit F4 = F5 = F6 =’;
say ’F7= F8= F9= F10= F11= F12=Return’;
say;
command. = ’’;
command.2 = ’REFRESH’;
command.3 = ’EXIT’;
command.12 = ’RETURN’;
call charout , ’====> ’;
/***/
/* Allow the user to press Enter or a function key. */
/***/
fkey = ’’; request = ’’;
do while fkey == ’’

key = SysGetKey(’NOECHO’);
keynum = c2d(key);
select

when keynum == 0 then do /* Function key */
key = SysGetKey(’NOECHO’);
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;

end /* Do */
when keynum == 13 then fkey = 2; /* Enter key */
when keynum == 27 then fkey = 3; /* Esc key */
otherwise do

request = request||key;
call charout ,key;

end /* do */
end /* select */

end /* do */
/***/
/* One of the functions keys or Enter has been pressed by the */
/* user, so let figure out what to do. */
/***/
select

when command.fkey == ’REFRESH’ then do /* Refresh */
nop;

end /* Do */
when command.fkey == ’EXIT’ then do /* Exit */

bailout = 1;
leave;

178 Application Programming Interfaces

end /* Do */
when command.fkey == ’RETURN’ then leave; /* Return */
otherwise nop;

end /* select */
end /* do */
else do

leave;
end /* do */

end /* Do */

return rc;

/**/
/* Subroutine: show_details */
/* */
/* This subroutine will request display the details for a CPC */
/* object, CPC Image object, or a CF object. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */
/**/
show_details: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

hmc_name screen_cols bailout,
status.,
HWMCA_CPC_OBJECT,
HWMCA_CPC_IMAGE_OBJECT,
HWMCA_CF_OBJECT,
HWMCA_EXPECTED_STATUS_SUFFIX,
HWMCA_ACTIVATION_PROFILE_SUFFIX,
HWMCA_LAST_ACT_PROFILE_SUFFIX,
HWMCA_IP_ADDRESS_SUFFIX,
HWMCA_SNA_ADDRESS_SUFFIX,
HWMCA_STATUS_SUFFIX,
HWMCA_MODEL_SUFFIX,
HWMCA_TYPE_SUFFIX,
HWMCA_MACHINE_SERIAL_SUFFIX,
HWMCA_CPC_SERIAL_SUFFIX,
HWMCA_CPC_ID_SUFFIX,
HWMCA_OPSYS_NAME_SUFFIX,
HWMCA_SYSPLEX_NAME_SUFFIX,
HWMCA_STATUS_OPERATING,
HWMCA_STATUS_NOT_OPERATING,
HWMCA_STATUS_NO_POWER,
HWMCA_STATUS_NOT_ACTIVATED,
HWMCA_STATUS_EXCEPTIONS,
HWMCA_STATUS_STATUS_CHECK,
HWMCA_STATUS_SERVICE,
HWMCA_STATUS_LINKNOTACTIVE,
HWMCA_STATUS_POWERSAVE;

parse arg object_id object_type object_name object_status ’(’ group ’)’ .;

/**/
/* Setup an array of the suffix values for the attributes that we */
/* need to get for the details display. Note that this array is */
/* different for CPCs and CPC Image/CF objects. */
/**/
suffix.=’’;
suffix.1 = HWMCA_EXPECTED_STATUS_SUFFIX;
suffix.2 = HWMCA_ACTIVATION_PROFILE_SUFFIX;
suffix.3 = HWMCA_LAST_ACT_PROFILE_SUFFIX;

Chapter 5. REXX management functions 179

if object_type == HWMCA_CPC_OBJECT then do
suffix.4 = HWMCA_IP_ADDRESS_SUFFIX;
suffix.5 = HWMCA_SNA_ADDRESS_SUFFIX;
suffix.6 = HWMCA_MODEL_SUFFIX;
suffix.7 = HWMCA_TYPE_SUFFIX;
suffix.8 = HWMCA_MACHINE_SERIAL_SUFFIX;
suffix.9 = HWMCA_CPC_SERIAL_SUFFIX;
suffix.10 = HWMCA_CPC_ID_SUFFIX;
suffix.0 = 10;

end /* Do */
else do

suffix.4 = HWMCA_OPSYS_NAME_SUFFIX;
suffix.5 = HWMCA_SYSPLEX_NAME_SUFFIX;
suffix.0 = 5;

end /* Do */
rc = HWMCA_DE_NO_ERROR;
box_width = (screen_cols-6);
/**/
/* Loop until the user selects RETURN or EXIT, or until an error */
/* occurred. We will refresh the data each time the loop is taken. */
/**/
do while rc == HWMCA_DE_NO_ERROR & bailout == 0

call SysCls;
field. = ’’;
/***/
/* Call get_attribute to get each of the attributes need for the */
/* details display. */
/***/
do i = 1 to suffix.0

field.i = get_attribute(object_id suffix.i);
end /* do */
/***/
/* Display the details title. */
/***/
say center(hmc_name||’ - ’||object_name||’ Details’,screen_cols);
/***/
/* Display the instance information set of attributes, note that */
/* this set is different for CPCs and CPC Image/CF objects. */
/***/
say left(’ ┌─Instance information’,screen_cols-3,’─’)||’┐ ’;
if object_type == HWMCA_CPC_OBJECT then do

say left(’ │ Status: ’left(object_status,(box_width/2)-8)||,
’ Activation profile: ’field.2,screen_cols-3)||’│ ’;

say left(’ │ Group: ’left(group,(box_width/2)-8)||,
’ Last used profile: ’field.3,screen_cols-3)||’│ ’;

end /* Do */
else do

say left(’ │ Status: ’ left(object_status,(box_width/2)-15)||,
’ Activation profile: ’field.2,screen_cols-3)||’│ ’;

say left(’ │ Group: ’ left(group,(box_width/2)-15)||,
’ Last used profile: ’field.3,screen_cols-3)||’│ ’;

say left(’ │ SysPlex name:’ left(field.5,(box_width/2)-15)||,
’ Operating System: ’field.4,screen_cols-3)||’│ ’;

end /* Do */
say left(’ └’,screen_cols-3,’─’)||’┘’;
/***/
/* Display the acceptable status settings. Note the set of */
/* acceptable status values is different for CPCs and CPC Image */
/* or CF objects. */
/***/

180 Application Programming Interfaces

say left(’ ┌─Acceptable status’,screen_cols-3,’─’)||’┐ ’;
accstatus. = ’ ’;
accstatus.0 = 9;
accstatus.1.value = x2b(right(d2x(HWMCA_STATUS_OPERATING),3,’0’));
accstatus.2.value = x2b(right(d2x(HWMCA_STATUS_NOT_OPERATING),3,’0’));
accstatus.3.value = x2b(right(d2x(HWMCA_STATUS_NO_POWER),3,’0’));
accstatus.4.value = x2b(right(d2x(HWMCA_STATUS_NOT_ACTIVATED),3,’0’));
accstatus.5.value = x2b(right(d2x(HWMCA_STATUS_EXCEPTIONS),3,’0’));
accstatus.6.value = x2b(right(d2x(HWMCA_STATUS_STATUS_CHECK),3,’0’));
accstatus.7.value = x2b(right(d2x(HWMCA_STATUS_SERVICE),3,’0’));
accstatus.8.value = x2b(right(d2x(HWMCA_STATUS_LINKNOTACTIVE),3,’0’));
accstatus.9.value = x2b(right(d2x(HWMCA_STATUS_POWERSAVE),3,’0’));
field.1 = x2b(right(d2x(field.1),3,’0’));
do i = 1 to accstatus.0

if (bitand(field.1,accstatus.i.value) == accstatus.i.value) then do
accstatus.i.check = ’x’;

end /* Do */
end /* do */
if object_type == HWMCA_CPC_OBJECT then do

say left(’ │ ’left(accstatus.1.check’ Operating’,box_width/2)||,
left(accstatus.9.check’ Power save’,box_width/2),screen_cols-3)||’│ ’;

say left(’ │ ’left(accstatus.2.check’ Not operating’,box_width/2)||,
left(accstatus.5.check’ Exceptions’,box_width/2),screen_cols-3)||’│ ’;

say left(’ │ ’left(accstatus.3.check’ No power’,box_width/2)||,
left(accstatus.6.check’ Status check’,box_width/2),screen_cols-3)||’│ ’;

say left(’ │ ’left(accstatus.8.check’ Communications not active’,box_width/2)||,
left(accstatus.7.check’ Service’,box_width/2),screen_cols-3)||’│ ’;

end /* Do */
else do

say left(’ │ ’left(accstatus.1.check’ Operating’,box_width/2)||,
left(accstatus.9.check’ Power save’,box_width/2),screen_cols-3)||’│ ’;

say left(’ │ ’left(accstatus.4.check’ Not activated’,box_width/2)||,
left(accstatus.5.check’ Exceptions’,box_width/2),screen_cols-3)||’│ ’;

say left(’ │ ’left(accstatus.2.check’ Not operating’,box_width/2)||,
left(accstatus.6.check’ Status check’,box_width/2),screen_cols-3)||’│ ’;

end /* Do */
say left(’ └’,screen_cols-3,’─’)||’┘’;
/***/
/* If it is a CPC object, then show the product information set */
/* of attributes. */
/***/
if object_type == HWMCA_CPC_OBJECT then do

say left(’ ┌─Product information’,screen_cols-3,’─’)||’┐’ ’;
type_model = right(field.7,6,’0’)||’ - ’||field.6;
say left(’ │ Machine type - model: ’left(type_model,(box_width/2)-23)||,

’ SNA address: ’field.5,screen_cols-3)||’│ ’;
ipaddr = field.4;
ip.4 = ipaddr // 256;
ipaddr = ipaddr % 256;
ip.3 = ipaddr // 256;
ipaddr = ipaddr % 256;
ip.2 = ipaddr // 256;
ipaddr = ipaddr % 256;
ip.1 = ipaddr;
ipaddr = ip.1’.’ip.2’.’ip.3’.’ip.4;
mach_serial = substr(field.8,4,2)||’ - ’||substr(field.8,6);
say left(’ │ Machine serial: ’left(mach_serial,(box_width/2)-23)||,

’ Internet address: ’ipaddr,screen_cols-3)||’│ ’;
mach_seq = right(substr(field.8,6),12,’0’);
plant = substr(field.8,4,2);
say left(’ │ Machine sequence: ’left(mach_seq,(box_width/2)-23)||,

’ Plant of man.: ’plant,screen_cols-3)||’│ ’;

Chapter 5. REXX management functions 181

cpc_id = right(field.10,2,’0’);
say left(’ │ CPC serial: ’left(field.9,(box_width/2)-23)||,

’ CPC identifier: ’cpc_id,screen_cols-3)||’│ ’;
say left(’ └’’,screen_cols-3,’─’)||’┘’;

end /* Do */
/***/
/* Display the valid function keys...nothing much allowed here */
/* except for return/exit or refresh. */
/***/
say;
say ’F1= F2=Refresh F3=Exit F4 = F5 = F6 =’;
say ’F7= F8= F9= F10= F11= F12=Return’;
say;
command. = ’’;
command.2 = ’REFRESH’;
command.3 = ’EXIT’;
command.12 = ’RETURN’;
call charout , ’====> ’;
/***/
/* Allow the user to press Enter or a function key. */
/***/
fkey = ’’; request = ’’;
do while fkey == ’’

key = SysGetKey(’NOECHO’);
keynum = c2d(key);
select

when keynum == 0 then do /* Function key */
key = SysGetKey(’NOECHO’);
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;

end /* Do */
when keynum == 13 then fkey = 2; /* Enter key */
when keynum == 27 then fkey = 3; /* Esc key */
otherwise do

request = request||key;
call charout ,key;

end /* do */
end /* select */

end /* do */
/***/
/* One of the functions keys or Enter has been pressed by the */
/* user, so let figure out what to do. */
/***/
select

when command.fkey == ’REFRESH’ then do /* Refresh */
/***/
/* Refresh the object’s status attribute value. */
/***/
x = get_status(object_id);
object_status = status.x;

end /* Do */
when command.fkey == ’EXIT’ then do /* Exit */

bailout = 1;
leave;

end /* Do */
when command.fkey == ’RETURN’ then leave; /* Return */
otherwise nop;

end /* select */
end /* Do */

return rc;

182 Application Programming Interfaces

/**/
/* Subroutine: get_name */
/* */
/* This subroutine will perform a Get request for the name attribute*/
/* for the specified object. */
/**/
get_name: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_NAME_SUFFIX;
parse arg object_id .;

name = ’’;
/**/
/* Build the object identifier for the object name attribute. */
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_NAME_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_NAME_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the object name attribute. */
/***/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Remove any newline characters from the name. */
/**/
name = translate(OUTPUT.1.DATA,’ ’,’0A’x);

end /* do */
else do

say ’Error’ rc ’on RxHwmcaGet for name attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for name attribute.’;
end /* do */

return name;

/**/
/* Subroutine: get_status */
/* */
/* This subroutine will perform a Get request for the status */
/* attribute for the specified object. */
/**/
get_status: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_STATUS_SUFFIX;
parse arg object_id .;

status = ’’;
/**/
/* Build the object identifier for the object status attribute. */
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_STATUS_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_STATUS_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the object status attribute. */
/***/

Chapter 5. REXX management functions 183

rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

status = OUTPUT.1.DATA;
end /* Do */
else do

say ’Error’ rc ’on RxHwmcaGet for status attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for status attribute.’;
end /* do */

return status;

/**/
/* Subroutine: get_status_error */
/* */
/* This subroutine will perform a Get request for the status error */
/* attribute for the specified object. */
/**/
get_status_error: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_STATUS_ERROR_SUFFIX;
parse arg object_id .;

status_error = ’’;
/**/
/*Build the object identifier for the object status error attribute.*/
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_STATUS_ERROR_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_STATUS_ERROR_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the object status error attribute. */
/***/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

status_error = OUTPUT.1.DATA;
end /* Do */
else do

say ’Error’ rc ’on RxHwmcaGet for status error attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for status error attribute.’;
end /* do */

return status_error;

/**/
/* Subroutine: get_type */
/* */
/* This subroutine will perform a Get request for the type attribute*/
/* for the specified object. */
/**/
get_type: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_OBJECT_TYPE_SUFFIX;
parse arg object_id .;

type = ’’;

184 Application Programming Interfaces

/**/
/* Build the object identifier for the object type attribute. */
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_OBJECT_TYPE_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_OBJECT_TYPE_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the object type attribute. */
/***/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

type = OUTPUT.1.DATA;
end /* do */
else do

say ’Error’ rc ’on RxHwmcaGet for type attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for type attribute.’;
end /* do */

return type;

/**/
/* Subroutine: get_profile */
/* */
/* This subroutine will perform a Get request for the activation */
/* profile attribute for the specified object. */
/**/
get_profile: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_ACTIVATION_PROFILE_SUFFIX;
parse arg object_id .;

profile = ’’;
/**/
/* Build the object identifier for the object type attribute. */
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,HWMCA_ACTIVATION_PROFILE_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,HWMCA_ACTIVATION_PROFILE_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the activation profile attribute. */
/***/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

profile = OUTPUT.1.DATA;
end /* do */
else do

say ’Error’ rc ’on RxHwmcaGet for activation profile attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for activation profile attribute.’;
end /* do */

return profile;

Chapter 5. REXX management functions 185

/**/
/* Subroutine: get_attribute */
/* */
/* This subroutine will perform a Get request for any attribute for */
/* the specified object. */
/**/
get_attribute: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR;
parse arg object_id suffix .;

attr = ’’;
/**/
/* Build the object identifier for the object attribute. */
/**/
rc = RxHwmcaBuildAttributeId(’ATTRID’,object_id,suffix);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId(’ATTRID’,object_id,suffix);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Get the object attribute. */
/***/
rc = RxHwmcaGet(’INITBLK.’,ATTRID,OUTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do

attr = OUTPUT.1.DATA;
end /* do */
else do

say ’Error’ rc ’on RxHwmcaGet for object attribute.’;
end /* do */

end /* do */
else do

say ’Error’ rc ’on RxHwmcaBuildId for object attribute.’;
end /* do */

return attr;

/**/
/* Subroutine: perform_command */
/* */
/* This subroutine will ask the user for confirmation and then */
/* perform the specified command. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */
/**/
perform_command: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_NAME_SUFFIX hmc_name screen_cols,
HWMCA_GROUP_CONTENTS_SUFFIX,
HWMCA_CONSOLE_ID nest bailout,
HWMCA_OBJECT_TYPE_SUFFIX,
HWMCA_ACTIVATION_PROFILE_SUFFIX,
HWMCA_CPC_OBJECT,
HWMCA_INFINITE_WAIT,
HWMCA_TYPE_INTEGER,
HWMCA_TYPE_OCTETSTRING,
HWMCA_TRUE,
HWMCA_FALSE,
HWMCA_DE_TIMEOUT,
HWMCA_EVENT_COMMAND_RESPONSE,
HWMCA_ACTIVATE_COMMAND,
HWMCA_DEACTIVATE_COMMAND,

186 Application Programming Interfaces

HWMCA_SEND_OPSYS_COMMAND,
HWMCA_RESETNORMAL_COMMAND,
HWMCA_RESETCLEAR_COMMAND,
HWMCA_START_COMMAND,
HWMCA_STOP_COMMAND,
HWMCA_LOAD_COMMAND,
HWMCA_PSWRESTART_COMMAND;

parse arg command_id object_id object_type object_name;

return_msg = ’’;
CMDINPUT. = ’’;
CMDINPUT.0 = 0;
/**/
/* Determine the name of the command, so that we can use it when */
/* displaying information to the user. */
/**/
select

when command_id = HWMCA_ACTIVATE_COMMAND then do
cmd_text = ’Activate’;

end /* Do */
when command_id = HWMCA_DEACTIVATE_COMMAND then do

cmd_text = ’Deactivate’;
end /* Do */
when command_id = HWMCA_SEND_OPSYS_COMMAND then do

cmd_text = ’Operating System Command’;
end /* Do */
when command_id = HWMCA_RESETNORMAL_COMMAND then do

cmd_text = ’Reset’;
end /* Do */
when command_id = HWMCA_START_COMMAND then do

cmd_text = ’Start’;
end /* Do */
when command_id = HWMCA_STOP_COMMAND then do

cmd_text = ’Stop’;
end /* Do */
when command_id = HWMCA_PSWRESTART_COMMAND then do

cmd_text = ’PSW Restart’;
end /* Do */
when command_id = HWMCA_LOAD_COMMAND then do

cmd_text = ’Load’;
end /* Do */
otherwise do

cmd_text = ’’;
return_msg = ’Unknown command requested.’;

end /* Do */
end /* select */
if cmd_text <> ’’ then do

/***/
/* We have a command that we understand, so now ask the user if */
/* they are sure that they want to do this. */
/***/
call SysCls;
say center(hmc_name||’ - ’||cmd_text||’ Confirmation’,screen_cols);
say;
say ’Target:’ object_name;
say;
say ’Are you sure you want perform the’ cmd_text ’task?’;
say "(Press ’Y’ for Yes or ’N’ for No)";
say;
call charout , ’====> ’;
key = SysGetKey(’ECHO’);
say;
if key == ’Y’ | key == ’y’ then do

Chapter 5. REXX management functions 187

/**/
/* The user said go ahead, so let’s issue the command. */
/**/
select

/***/
/* First, let’s get the activation profile associated with */
/* the object, so we can ask the user if they want to use */
/* that one or override it with another one. */
/***/
when command_id = HWMCA_ACTIVATE_COMMAND then do

profile = get_profile(object_id);
if profile <> ’’ then do

say;
say ’The activation profile currently associated with’ object_name ’is:’ profile’.’;

end /* Do */
say ’Please specify a new activation profile to be used or simply press Enter to’;
say ’accept the default activation profile.’;
call charout , ’====> ’;
parse pull CMDINPUT.1.DATA .;
if CMDINPUT.1.DATA <> ’’ then do

CMDINPUT.1.TYPE = HWMCA_TYPE_OCTETSTRING;
CMDINPUT.0 = 1;

end /* Do */
end /* Do */
/***/
/* Before issuing the request, we need to prompt the user */
/* for the command text and whether or not the command */
/* should be a priority command. */
/***/
when command_id = HWMCA_SEND_OPSYS_COMMAND then do

say;
say ’Please enter the operating system command text.’;
call charout , ’====> ’;
parse pull CMDINPUT.2.DATA
CMDINPUT.2.TYPE= HWMCA_TYPE_OCTETSTRING;
say;
say "Should this command be issued as a priority command?";
say "(Press ’Y’ for Yes or ’N’ for No)";
call charout , ’====> ’;
key = SysGetKey(’ECHO’);
say;
if key == ’Y’ | key == ’y’ then CMDINPUT.1.DATA = HWMCA_TRUE;
else CMDINPUT.1.DATA = HWMCA_FALSE;
CMDINPUT.1.TYPE= HWMCA_TYPE_INTEGER;
CMDINPUT.0 = 2;

end /* Do */
when command_id = HWMCA_LOAD_COMMAND then do

say;
say ’Please enter the Load address to be used.’;
call charout , ’====> ’;
parse pull CMDINPUT.1.DATA
CMDINPUT.1.TYPE= HWMCA_TYPE_OCTETSTRING;
say;
say ’Please enter the Load parameter to be used.’;
call charout , ’====> ’;
parse pull CMDINPUT.2.DATA
CMDINPUT.2.TYPE= HWMCA_TYPE_OCTETSTRING;
say;
say "Should memory be cleared before performing the Load?";
say "(Press ’Y’ for Yes or ’N’ for No)";

188 Application Programming Interfaces

call charout , ’====> ’;
key = SysGetKey(’ECHO’);
say;
if key == ’Y’ | key == ’y’ then CMDINPUT.3.DATA = HWMCA_TRUE;
else CMDINPUT.3.DATA = HWMCA_FALSE;
CMDINPUT.3.TYPE= HWMCA_TYPE_INTEGER;
say;
say ’Please enter the timeout value to use when performing the Load.’;
say "(Must be between 60 and 600 seconds.)";
call charout , ’====> ’;
parse pull CMDINPUT.4.DATA
CMDINPUT.4.TYPE= HWMCA_TYPE_INTEGER;
say;
say "Should status be stored before performing the Load?";
say "(Press ’Y’ for Yes or ’N’ for No)";
call charout , ’====> ’;
key = SysGetKey(’ECHO’);
say;
if key == ’Y’ | key == ’y’ then CMDINPUT.5.DATA = HWMCA_TRUE;
else CMDINPUT.5.DATA = HWMCA_FALSE;
CMDINPUT.5.TYPE= HWMCA_TYPE_INTEGER;
CMDINPUT.0 = 5;

end /* Do */
when command_id = HWMCA_RESETNORMAL_COMMAND then do

say;
say "Should memory be cleared as a part of the Reset?";
say "(Press ’Y’ for Yes or ’N’ for No)";
call charout , ’====> ’;
key = SysGetKey(’ECHO’);
say;
if key == ’Y’ | key == ’y’ then command_id = HWMCA_RESETCLEAR_COMMAND;

end /* Do */
otherwise nop;

end /* select */
/**/
/* Now we are all set, so lets issue the command. */
/**/
say;
say ’Issuing the’ cmd_text ’command request...’;
rc = RxHwmcaCommand(’INITBLK.’,object_id,command_id,’CMDINPUT.’,api_timeout);
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* The request was successful, so now let’s wait for the */
/* completion response. */
/***/
say;
call charout , ’Waiting for the’ cmd_text ’task to complete.’;
cmd_done = 0;
do while cmd_done == 0 & rc == HWMCA_DE_NO_ERROR

rc = RxHwmcaWaitEvent(’INITBLK.’,’OUTPUT.’,5000);
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* Let’s make sure that this event is a command */
/* response for the same command and target for our */
/* request. */
/***/
if OUTPUT.2.DATA == HWMCA_EVENT_COMMAND_RESPONSE then do

/* It is a command response event */
if OUTPUT.1.DATA == object_id then do

/* It is a response for our target object */

Chapter 5. REXX management functions 189

if OUTPUT.4.DATA == command_id then do
/* It is the command we issued */
cmd_done = 1;
if OUTPUT.6.DATA == HWMCA_DE_NO_ERROR then do

return_msg = cmd_text ’command completed successfully.’;
end /* Do */
else do

return_msg = cmd_text ’command failed with rc’ OUTPUT.6.DATA’.’;
end /* Do */

end /* Do */
end /* Do */

end /* Do */
end /* Do */
else do

if rc == HWMCA_DE_TIMEOUT then do
rc = HWMCA_DE_NO_ERROR;
call charout , ’.’;

end /* Do */
else do

return_msg = ’Error’ rc ’on RxHwmcaWaitEvent call for’ cmd_text ’command.’;
end /* Do */

end /* Do */
end /* do */

end /* do */
else do

return_msg = ’Error’ rc ’on RxHwmcaCommand call for’ cmd_text ’command.’;
end /* do */

end /* Do */
else do

return_msg = ’Command request cancelled.’;
end /* Do */

end /* Do */

return return_msg;

190 Application Programming Interfaces

Chapter 6. Configuring for the data exchange APIs

Before the Console APIs (Data Exchange APIs and Commands API) can be used, some configuration
tasks must be performed on the Hardware Management Console or Support Element Console. These
configuration tasks fall into two categories:
v SNMP configuration
v Console API configuration.

Refer to the information about the following pages for detailed steps necessary to perform these two
types of configuration.

Note: Once these steps have been successfully completed, the Console APIs (Data Exchange APIs and
Commands API) can be used while the Hardware Management Console or Support Element Console is
up and running. The APIs will not be functional when the console is not running, even if these
configuration steps have been completed.

Note: For Consoles Version 2.9.0 or later the SNMP and Console API configuration tasks have been
merged into a single task named Customize API Settings.

Configuring for SNMP (for consoles earlier than version 2.9.0)
The Console uses the SNMP support provided by the SystemView® Agent for OS/2. Use the following
procedure to enable the SystemView Agent for OS/2. If you need more information, refer to SystemView
Agent for OS/2 User’s Guide .

To configure the SystemView Agent for OS/2:
1. Log on to the Console in Access Administrator mode.
2. Start the SNMP Configuration task, which can be found under Console Actions in the Views area of

the Console.
3. Add one or more entries in the Community Name Information box by selecting the Communities tab

of the SNMP Configuration notebook window. After specifying the following information, select the
Add push button to add a new community name or select the Change push button to change an
existing community name.
It is recommended that one entry be added for the Console itself and one additional entry for each
TCP/IP host (machine) that will be making Management API requests.
It is important that a valid entry be specified for the Console. This entry must match both the Console
TCP/IP address and community name (specified in step 5 on page 193). It must also specify the use
of the UDP protocol.

Protocol
Use this field to specify the communications protocol over which the community name is
valid. This must be set to UDP for the community name that is to be used by this Console.

The community name(s) that are to be used by applications using the Console APIs should
also be set to UDP.

Name This field should be filled in with any character string. Each community name in the list must
be unique. Please note that this field is case sensitive.

Note the community name that should be used by the Console, since it will need to be
specified in step 5 on page 193.

© Copyright IBM Corp. 2000, 2013 191

Note the community name(s) that are to be used by applications using the Console APIs, since
it will need to be specified on the HwmcaInitialize calls issued by those applications.

Address
If you are following the recommendation of adding an entry for the Console and each
requesting application, then this field should be filled in with the TCP/IP address of the
machine that will be using the community name. If you are not following this
recommendation, then refer to the SystemView Agent for OS/2 documentation for further
details on this field.

Note: The Console’s TCP/IP address can be obtained by viewing the Network page of the
Hardware Management Console Settings or Support Element Settings task. This task is found
under Console Actions in the Views area and can only be performed by a user logged on to
the Console in Access Administrator mode.)

Network Mask
If you are following the recommendation of adding an entry for the Console itself and each
requesting application, then this field should be filled in with a character string of
255.255.255.255. If you are not following this recommendation, then refer to the SystemView
Agent for OS/2 documentation for further details on this field.

Access Type
Use this field to specify the type of access that is allowed for the community name.

The access type for the community name that is to be used by the Console can be either read
only or read/write.

The access type for the community name(s) that are to be used by applications using the
Console APIs MUST be read/write.

4. Update the MIB Variables by selecting the MIB Variables tab of the SNMP Configuration notebook
window. (This step is optional since the SystemView Agent for OS/2 provides default values for any
MIB Variable that is not specified.)

Description
Use this field to specify a meaningful name for this Console.

Contact
Use this field to specify the name of the contact person for this Console.

Name Use this field to specify the TCP/IP hostname of this Console.

Location
Use this field to specify the physical location of this Console.

5. Select the OK push button to save the changed settings and close the SNMP Configuration notebook
window.

6. If any of the above data was added or changed, you need to shut down and restart the Console
before the changes will be put into effect. However, before doing so, continue with the configuration
steps for the Console below.

Configuring the console for API (for consoles earlier than version
2.9.0)
The Console API configuration steps can be performed by using the API page of the Hardware
Management Console Settings or Support Element Settings task. This task is found under Console Actions in
the Views area.

To configure the Console for API support:
1. Log on to the Console in Access Administrator mode.
2. Open the Hardware Management Console Settings or the Support Element Settings task.

192 Application Programming Interfaces

3. Select the API tab.
4. Check the Enable the Hardware Management Console Application Program Interface checkbox for

the Hardware Management Console Application or the Enable the Support Element Console
Application Program Interface checkbox for the Support Element.

5. Specify the community name to be used by the Console. Refer to step 3 on page 191 for more details
about the community name and how it is specified.

6. Specify any SNMP agent parameters that should be used when the Console automatically starts the
SystemView Agent for OS/2. Refer to the SystemView Agent for OS/2 User’s Guide for more information
regarding the SystemView Agent for OS/2 parameters.

Note: In order for the Console to be able to communicate with the SystemView Agent for OS/2, the
parameters -transport udp and -dpi tcp must be specified.

7. Specify any additional locations where enterprise-specific SNMP trap messages created by the Console
should be sent in the Event notification information box. Entries can be added, changed, and deleted
throughout with the use of the New, Change, and Delete push buttons respectively.
Adding entries to the Event notification information box will cause the Console to send the specified
event notifications to TCP/IP port 162 at the locations specified.

8. Select the Apply push button to save the changes.
9. If any of the above data was added or changed, then you need to stop and restart the Console before

the changes will be in effect. The Console can be stopped by logging off and then selecting the Cancel
push button on the logon window. The Hardware Management Console Application can be restarted
by starting the Hardware Management Console Application icon from the desktop, while the Support
Element Console can be restarted by rebooting the Support Element console.

Configuration problems
If there are configuration mistakes with either the SNMP configuration or the Console API configuration,
the Console APIs will not be functional. The nature of the configuration problem can be determined by
analyzing the Hardware Message that was created when the Console was started. The details of this
Hardware Message will list the exact configuration problem(s) that were found, along with corrective
actions.

Configuring the console for API (for consoles version 2.9.0 or later)
The Console API configuration steps can be performed by using the Customize API Settings task found in
the Hardware Management Console Settings or Support Element Settings group of tasks. This task is found
under Console Actions in the Views area.

To configure the Console for API support:
1. Log on to the Console in Access Administrator mode.
2. Open the Hardware Management Console Settings or the Support Element Settings group of tasks.
3. Open the Customize API Settings task.
4. Check the Enable SNMP APIs.
5. Specify any SNMP agent parameters desired. Note: No special SNMP agent parameters are required

for API to work correctly.
6. Add one or more entries in the Community Names box by selecting Add push button to add a new

community name or select the Change push button to change an existing community name. It is
recommended that one entry be added for each TCP/IP host (machine) that will be making
Management API requests.

Name This field should be filled in with any character string. Each community name in the list must
be unique. Note the community name(s) that are to be used by applications using the Console
APIs, since it will need to be specified on the HwmcaInitialize calls issued by those
applications.

Chapter 6. Configuring for the data exchange APIs 193

Address
If you are following the recommendation of adding an entry for the Console and each
requesting application, then this field should be filled in with the TCP/IP address of the
machine that will be using the community name.

Note: This can be specified as an IPV6 address.

Network Mask/Prefix
If you are following the recommendation of adding an entry for the Console itself and each
requesting application, then this field should be filled in with a character string of
255.255.255.255. When using IPV6 addresses, the prefix for the address should be used,
instead of a masked value.

Access Type
Use this field to specify the type of access that is allowed for the community name. The access
type for the community name(s) that are to be used by applications using the Console APIs
MUST be read/write.

7. Specify any additional locations where enterprise-specific SNMP trap messages created by the Console
should be sent in the Event notification information box. Entries can be added, changed, and deleted
throughout with the use of the Add, Change, and Delete push buttons respectively. Adding entries to
the Event notification information box will cause the Console to send the specified event
notifications to TCP/IP port 162 at the locations specified. 8. Select the OK or Apply push buttons to
save the changes.

8. If any of the above data was added or changed, then you need to stop and restart the Console before
the changes will be in effect. The Console can be stopped by using the Shutdown or Restart task
found in the Console Actions view.

194 Application Programming Interfaces

Appendix A. Building an application

The following information should be helpful when trying to build an application that uses the Console
Application Programming Interfaces. All of the files necessary to build and run an API application are
preloaded on Hardware Management Consoles for versions earlier than Version 2.9.0.

The most up to date copies of these build and run-time files are now available on Resource Link at
http://www.ibm.com/servers/resourcelink. Click on Services, and then Click API.

Hardware Management Console (prior to version 2.9.0)
The Console Application Programming Interfaces build and run-time files are preloaded on the Hardware
Management Console so applications executing on the Hardware Management Console can make direct
use of these interfaces once they are successfully built. The Data Exchange APIs and Commands API
(both the C language and Rexx interfaces) can be executed from an OS/2 workstation other than the
Hardware Management Console workstation. The files that need to be moved to the other workstation
for this are:

ACTZSAPI.DLL
The OS/2 dynamic link library containing the C language Data Exchange APIs and Commands
API. This file can be found in the D:\DYNALINK directory of the Hardware Management
Console.

ACTZSNMP.DLL
The OS/2 dynamic link library containing the Rexx language Data Exchange APIs and
Commands API. This file can be found in the D:\DYNALINK directory of the Hardware
Management Console.

The D:\TOOLKIT directory of the Hardware Management Console contains everything necessary to build
an application that uses the Hardware Management Console Application Programming Interfaces. The
items included in this directory are:

HWMCAAPI.H
This C language include file contains all of the constant definitions, structure definitions, and
function prototypes for the HWMCA Management APIs.

HWMCAAPI.LIB
This library file contains all of the linkages needed in order to use the HWMCA Management
APIs.

Note: The OS/2 dynamic link library referenced by this library file can be found in the
D:\DYNALINK directory of the Hardware Management Console with the name ACTZSAPI.DLL

HWMCATST.C
This C language source file is a copy of the example Management API application found in “Data
exchange APIs and commands API example” on page 62.

HWMCATST.MAK
This OS/2 MAKE file can be used to build the example Management API application found in
“Data exchange APIs and commands API example” on page 62.

HWMCATST.EXE
This is an executable version of the Management API application found in “Data exchange APIs
and commands API example” on page 62.

© Copyright IBM Corp. 2000, 2013 195

HWMCARX.CMD
This Rexx command file is a copy of the example Rexx Management API application found in
“Data exchange APIs (REXX sample)” on page 167.

HWMCAWIN.DLL
The 32-bit Windows dynamic link library containing the C language Data Exchange APIs and
Commands API.

HWMCAORX.DLL
The 32-bit Windows dynamic link library containing the Object Rexx language Data Exchange
APIs and Commands API.

HWMCAWIN.LIB
This library file contains all of the linkages needed in order to use the HWMCA Management
APIs on a 32-bit Windows platform.

HWMCAWIN.EXE
This is a 32-bit Windows executable version of the Management API application found in “Data
exchange APIs and commands API example” on page 62.

HWMCAV1.MIB
This is a SNMP version 1 based Management Information Base (MIB) that describes the entities
that can be managed by Management APIs.

HWMCAV2.MIB
This is a SNMP version 2 based Management Information Base (MIB) that describes the entities
that can be managed by Management APIs.

HWMCAAIX.TAR
This file is an AIX® TAR file containing the following files:

hwmcaaix
AIX library file containing all of the linkages needed in order to use the HWMCA
Management APIs on an AIX platform.

libhwmcaaix.so
Shared Object Library containing the C/C++ language HWMCA Management APIs.

HWMCAMVS.TAR
This file is an z/OS® or OS/390® OpenEdition TAR file containing the following files:

hwmcamvs
This is an OpenEdition HFS executable version of the Management API application found
in “Data exchange APIs and commands API example” on page 62.

hwmcaapi.x
z/OS or OS/390 library file containing all the linkages needed in order to use the
HWMCA Management APIs on an z/OS or OS/390 platform.

hwmcaapi
z/OS or OS/390 DLL containing the C/C++ language HWMCA Management APIs.

HWMCA386.TAR
This file is an Intel based Linux TAR file containing the following files:

hwmcalnx
This is an Intel Linux executable version of the Management API application found in
“Data exchange APIs and commands API example” on page 62.

libhwmcalnx.so
Link to ibhwmcalnx.so.0.

libhwmcalnx.so.0
Link to libhwmcalnx.so.0.0.

196 Application Programming Interfaces

libhwmcalnx.so.0.0
Intel Linux Shared Object Library containing the C/C++ language HWMCA Management
APIs.

The Hardware Management Console Application Programming Interface OS/2 dynamic link libraries are
built using the IBM VisualAge® C++ complier. These dynamic link libraries are written as 32- bit
interfaces and should be invoked accordingly.

When building an application that uses some of the Hardware Management Console Application
Programming Interfaces, make sure that the C language include files are located in a directory found in
the INCLUDE environment variable, and the interface library files are located in a directory found in the
LIB environment variable.

Appendix A. Building an application 197

198 Application Programming Interfaces

Appendix B. HWMCA_EVENT_COMMAND_RESPONSE return
codes

Following is a list of HWMCA_EVENT_COMMAND_RESPONSE return codes and their descriptions.
The return code values are shown as hexadecimal values with the decimal equivalent in parentheses.

0806000A (134610954) Resource unknown.

Explanation: The profile name specified in an
operations command is not recognized by the receiving
node.

Programmer response: Correct the configuration
identifier and re-send the request.

08090000 (134807552) Mode inconsistency: The
requested function cannot be performed
in the present state of the receiver.

Explanation: This command is prohibited because the
target is in an incompatible mode. For example, an
ITIMER request is not accepted when the system is
power-on reset in LPAR mode.

Programmer response: This function cannot be
performed in the present state of the receiver. Retry the
request after the target mode status has changed.

08090001 (134807553) Mode inconsistency: The
requested function cannot be performed
in the present state of the receiver.

Explanation: Acceptance of the command is
prohibited because the target is in an incompatible
mode. For example, an ITIMER request is not accepted
when the system is power-on reset in LPAR mode.

Programmer response: None. This function cannot be
performed in the present state of the receiver.

080A000A (134873098) Permission rejected: The
receiver had denied an implicit or
explicit request of the sender.

Explanation: A STATLEV request was rejected because
it was not compatible with the status reporting values
set in the receiver.

Programmer response: Correct the STATLEV value
and re-send the request.

080C0005 (135004165) Procedure not supported: A
procedure specified is not supported in
the receiver.

Explanation: The command is not supported.

Programmer response: re-send the request using a
supported command, if possible.

080C0007 (135004167) Procedure not supported: A
procedure specified is not supported in
the receiver.

Explanation: A request for a function is supported by
the receiver, but the resource identified in the request
does not support that function.

Programmer response: None. This function cannot be
canceled.

08120000 (135397376) Insufficient resource: The
receiver cannot act on the request
because of a temporary lack of resource.

Explanation: System resources are temporarily busy.

Programmer response: re-send command if required.

08120011 (135397393) Insufficient resource: The
receiver cannot act on the request
because of a temporary lack of resource.

Explanation: Insufficient storage is available to the
target component to satisfy the request.

Programmer response: re-send command.

08150001 (135593985) Function active: A request to
activate an element or procedure was
received, but the element or procedure
was already active.

Explanation: Unable to perform the command because
the target CPC Subset or CPC Image is operational and
the force operand has not indicated the override
selection.

Programmer response: Put the system in the
appropriate state and re-send the command.

081A0000 (135921664) Request sequence error.

Explanation: Unable to perform the command because
the target partition is in the deactivated state.

Programmer response: Activate the logical partition,
then re-send the original request.

081A0009 (135921673) Request sequence error.

© Copyright IBM Corp. 2000, 2013 199

Explanation: Unable to perform command because
power is not on.

Programmer response: Send a POWERON or
ACTIVATE command, then re-send the original request.

081A000A (135921674) Request sequence error.

Explanation: Unable to perform command because
power-on reset is not complete.

Programmer response: Send a POWERON or
ACTIVATE command, then re-send the original request.

081A000B (135921675) Request sequence error.

Explanation: Unable to perform command because the
targeted CPU is not in the stopped state.

Programmer response: Send a STOP command, then
re-send the original request.

081A000E (135921678) Request sequence error.

Explanation: Unable to perform command because the
interval timer is present only when the CPC Image is
operating in S/370 mode.

Programmer response: None. The requested command
cannot be performed when the system is power-on
reset in either ESA/390 mode or LPAR mode.

081A0010 (135921680) Request sequence error.

Explanation: The request is rejected or failed because
the target resource is already in the state or condition
that the request would have provided.

Programmer response: None. The requested command
has already been performed.

081C0005 (136052741) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: A power-on request failed.

Programmer response: Verify that power is available
and re-send the command.

081C0006 (136052742) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: A POR(YES) or POR(IML) failed. This
may be accompanied by a hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

081C0007 (136052743) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: An operating system load request (for
example, LOAD) failed.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

081C000A (136052746) Request not executable: A
POWEROFF request cannot be
performed because of a permanent error
condition in the receiver.

Explanation: A power off request failed due to an
unexpected power status.

Programmer response: Reset any abnormal power
conditions at the receiver, such as tripped CBs, and
retry the power off command. Call for service if the
problem persists.

081C00BA (136052922) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: The receiver has an error resulting from
a licensed internal code problem that prevents
execution of the request.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

082D0001 (137166849) Busy.

Explanation: Resources needed to process the request
are being used.

Programmer response: Wait for the resources to be
released, then re-send the request.

08380000 (137887744) Request not executable because
of resource or component state
incompatibility: The request is not
executable because it is not compatible
with the state of a resource or
component in the receiver.

Explanation: Unable to perform the command because
the system is in an invalid state.

Programmer response: Put the system in a state that
is compatible with the requested command and re-send
the request.

081A000A (135921674) • 08380000 (137887744)

200 Application Programming Interfaces

0838001B (137887771) Request not executable because
of resource or component state
incompatibility: The request is not
executable because it is not compatible
with the state of a resource or
component in the receiver.

Explanation: Request will not be honored because it
was submitted to a node at a time when a local
operator or other application reserved control of the
node.

Programmer response: Request the local operator to
release control (log off), or retry later.

08380037 (137887799) MVS is not receiving. The
request is not executable because the
MVS operating system is not able to
respond because it is in an inactive or
quiesced state.

Explanation: Request will not be honored because it
requires that the resource operating system is in an
active state.

Programmer response: Reissue the command after the
operating system has been reactivated.

084F0000 (139395072) Resource not available: A
requested resource is not available to
service the given request.

Explanation: A resource error exits which may
indicate a configuration problem or insufficient
resource to execute the command.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085B0000 (140181504) Unknown resource name: The
identified resource required to complete
the requested command is not known.

Explanation: The profile name specified in the
AUTOACT operand of the RESET profile is not
recognized by the receiving node.

Programmer response: Correct the profile name and
re-send the request.

085C0000 (140247040) System exception. The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: An internal error has occurred with the
processing of this request. This may be accompanied by
a hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085C0001 (140247041) System exception: The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: The exception is identifiable as a
system-related problem. This may be accompanied by a
hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085C0002 (140247042) System exception: The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: The exception is identified as a
permanent system-related problem. This may be
accompanied by a hardware alert.

Programmer response: If the code is returned for an
ACTIVATE request, to complete activation, send
another ACTIVATE request to complete the initial
program load.

For all other requests, retry the operation. Contact the
IBM Service Support System if the problem persists.

08B20002 (145883138) Data transmission failure: The
data transmission between an
application in the support element and
an application in the processor was
incomplete, causing abnormal
termination of the function.

Explanation: A time-out has occurred while waiting
for transmission of data between two applications.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

100B0001 (269156353) Required structure absent.

Explanation: An operand required by the command
was not found in the command string.

Programmer response: Enter the required operand
and re-send the request.

100B0003 (269156355) Multiple occurrences of a
nonrepeatable structure.

Explanation: A value that cannot be repeated was
detected in the command string.

Programmer response: Change the duplicate value(s)
to unique value(s) and re-send the request.

0838001B (137887771) • 100B0003 (269156355)

Appendix B. HWMCA_EVENT_COMMAND_RESPONSE return codes 201

100B0006 (269156358) Length outside specified range.

Explanation: The length of the operand indicated in
SDATA is outside the allowable range.

Programmer response: Correct the operand data value
and re-send the request.

100B000B (269156363) Precluded combination of
structures and data values present.

Explanation: One command operand or data value is
in conflict with one or more other operands or data
values.

Programmer response: Remove the precluded
operand(s) or correct the command and re-send the
request. Also check the activation profile(s) used for
activation, as the error may be the result of incorrect
profile data.

100B000C (269156364) Unknown or unsupported data
value.

Explanation: The data value in the operand indicated
by SDATA is either unknown or unsupported.

Programmer response: Correct the operand data value
and re-send the request.

100B000D (269156365) Incompatible data values.

Explanation: The data value in the operand indicated
by SDATA is not compatible with this or other values.

Programmer response: Correct the conflicting operand
data value and re-send the request.

100B0012 (269156370) Recognized but unsupported
structure.

Explanation: The operand indicated by SDATA is
recognized but not supported by the target support
element.

Programmer response: Remove the unsupported
operand and re-send the request.

80180002 (2149056514) Resource unknown.

Explanation: The secondary OCR specified in the
OCFNAME operand is not recognized.

Programmer response: Ensure that the system is
power-on reset in LPAR mode and the secondary name
in the OCFNAME operand matches a logical partition
name in the active IOCDS.

100B0006 (269156358) • 80180002 (2149056514)

202 Application Programming Interfaces

Appendix C. API return codes

Data exchange API call return codes
Following is a list of return codes and their descriptions, which can be returned from the various Data
Exchange API calls. (The decimal values are shown in parentheses).

(0) HWMCA_DE_NO_ERROR

Explanation: A Data Exchange API call has completed
successfully.

Programmer response: None.

(1) HWMCA_DE_NO_SUCH_OBJECT

Explanation: A Data Exchange API call specified an
object identifier that does not exist.

Programmer response: Check the specified object
identifier to ensure that it is valid and that the API
support is enabled and functioning correctly on the
target console.

(2) HWMCA_DE_INVALID_DATA_TYPE

Explanation: A HwmcaSet Data Exchange API call
specified an invalid data type.

Programmer response: Check the specified data type
value to ensure that is one of the supported values and
that is appropriate for the target object identifier.

(3) HWMCA_DE_INVALID_DATA_
LENGTH

Explanation: Either a HwmcaSet Data Exchange API
call specified a data length value that is not appropriate
for the corresponding data type or is not appropriate
for the target object identifier, or the result of a
HwmcaGet or HwmcaGetNext is too large to be
transported by the underlying transport protocol.

Programmer response: Either check to ensure that a
length of zero is used for a data type of
HWMCA_TYPE_NULL and that a length of 1, 2, or 4 is
used for a data type of HWMCA_TYPE_INTEGER, or
use an alternative approach for retrieving the desired
data.

(4) HWMCA_DE_INVALID_DATA_PTR

Explanation: A HwmcaSet Data Exchange API call
specified a data pointer that is not appropriate for the
corresponding data type.

Programmer response: Check to ensure that a null
pointer is used for a data type of
HWMCA_TYPE_NULL and that a non-null pointer is

used for all other data types.

(5) HWMCA_DE_INVALID_DATA_VALUE

Explanation: A HwmcaSet Data Exchange API call
specified a data value that is not appropriate for the
target object identifier.

Programmer response: Check to make sure that the
data value is one of the allowed value for the target
object identifier.

(6) HWMCA_DE_INVALID_INIT_PTR

Explanation: A Data Exchange API call specified null
as the pointer to the HWMCA_INITIALIZE_T
structure.

Programmer response: Make sure that this value is
specified as a pointer to a valid
HWMCA_INITIALIZE_T structure.

(7) HWMCA_DE_INVALID_ID_PTR

Explanation: A Data Exchange API call specified a
null pointer as the object identifier parameter.

Programmer response: Make sure that this value is
specified as a pointer to a valid object identifier string.

(8) HWMCA_DE_INVALID_BUF_PTR

Explanation: A Data Exchange API call specified null
as the pointer to the output buffer.

Programmer response: Make sure that this value is
specified as a pointer to an address of the output
buffer.

(9) HWMCA_DE_INVALID_BUF_SIZE

Explanation: A Data Exchange API call specified zero
as the length of the output buffer.

Programmer response: Make sure that this parameter
is a non-zero value.

(10) HWMCA_DE_INVALID_DATATYPE_
PTR

Explanation: A HwmcaSet Data Exchange API call
specified null as the pointer to the

© Copyright IBM Corp. 2000, 2013 203

HWMCA_DATATYPE_T structure used to describe the
data to be used for the set operation.

Programmer response: Make sure that this value is
specified as a pointer to an address of a valid
HWMCA_DATATYPE_T structure.

(11) HWMCA_DE_INVALID_TARGET

Explanation: A HwmcaInitialize Data Exchange API
call specified an invalid host name or internet address
for the target console.

Programmer response: . Make sure that the value
pointed to by the pHost field of the
HWMCA_SNMP_TARGET_T structure is internet
address or hostname.

(12) HWMCA_DE_INVALID_EVENT_MASK

Explanation: A HwmcaInitialize Data Exchange API
call specified a value in the ulEventMask field of the
HWMCA_INITIALIZE_T structure that is not valid.

Programmer response: Make sure that this field only
contains some combination of the valid event mask
values.

(13) HWMCA_DE_INVALID_PARAMETER

Explanation: A Data Exchange API call specified an
invalid parameter. Depending on the API call being
made, one of the following problems occurred:

HwmcaInitialize

v The HWMCA_INITIALIZE_T structure used
on a previous HwmcaInitialize call specifies
a host name or internet address specified
that is different that what was initially
specified.

v The ulReserved field of
HWMCA_INITIALIZE_T structure contains
a non-null value.

HwmcaBuildAttributeId
The pointer to the attribute suffix string was
specified as a null pointer.

HwmcaGet or HwmcaGetNext or HwmcaWaitEvent
The pointer to the value to be filled in with
the number of bytes needed for the output
buffer was specified as a null pointer.

(14) HWMCA_DE_READ_ONLY_OBJECT

Explanation: A HwmcaSet Data Exchange API call
specified a target object identifier that is read only.

Programmer response: . Make sure to use a target
object identifier that allows for write access.

(15) HWMCA_DE_SNMP_INIT_ERROR

Explanation: A HwmcaInitialize Data Exchange API
call encountered an error trying to create/allocate the
internal resources necessary to complete the operation.
For example, memory could not be allocated
successfully or TCP/IP sockets could not be created.

Programmer response: Make sure that the necessary
resources are available to be used on the requesting
machine.

(16) HWMCA_DE_INVALID_OBJECT_ID

Explanation: A Data Exchange API call was made
with an invalid object identifier.

Programmer response: Check the object identifier
specified on the call to make sure that it is specified
correctly and is a valid object identifier.

(17) HWMCA_DE_REQUEST_ALLOC_
ERROR

Explanation: A Data Exchange API call encountered
an error trying to allocate some temporary storage for
internal use.

Programmer response: Make sure that enough
memory is available on the requesting machine.

(18) HWMCA_DE_REQUEST_SEND_
ERROR

Explanation: A Data Exchange API encountered an
error trying to send a request to the target console.

Programmer response: This is typically due to a
network error of some sort.

(19) HWMCA_DE_TIMEOUT

Explanation: A Data Exchange API timed out while
waiting for a response. For the HwmcaWaitEvent API
call, this simply means that no events were received
within the specified time period, so the calling
application should proceed accordingly. For other Data
Exchange API calls, the response was not received
within the specified time period.

Programmer response: Make sure that the timeout
value is large enough to allow for the request to be
completed and the response to be returned.

(20) HWMCA_DE_REQUEST_RECV_
ERROR

Explanation: A Data Exchange API encountered an
error trying to receive a response from the target
console. This is typically due to a network error of
some sort.

(11) • (20)

204 Application Programming Interfaces

Programmer response: Investigate the possibility of a
network error.

(21) HWMCA_DE_SNMP_ERROR

Explanation: A Data Exchange API call received a
response that contained an unrecognized error status
value.

Programmer response: Make sure that no errors were
reported on the target console that would have resulted
in incomplete or invalid data to be sent as a response.

(22) HWMCA_DE_INVALID_TIMEOUT

Explanation: A Data Exchange API call was made
with the timeout value specified as zero.

Programmer response: Make sure that an appropriate
non-zero timeout value is specified on the API call.

(28) HWMCA_DE_INVALID_HOST

Explanation: A HwmcaInitialize Data Exchange API
call was made with a null pointer value specified as the
pHost field of the HWMCA_SNMP_TARGET_T
structure.

Programmer response: Make sure this field points to a
valid hostname or internet address.

(29) HWMCA_DE_INVALID_COMMUNITY

Explanation: A HwmcaInitialize Data Exchange API
call was made with a zero length string value specified
as the szCommunity field of the
HWMCA_SNMP_TARGET_T structure.

Programmer response: Make sure that this field
contains a community name string with a length
greater than zero.

(30) HWMCA_DE_INVALID_QUALIFIER

Explanation: A HwmcaInitialize Data Exchange API
call was made that specified event qualification data,
but the ulType field of the
HWMCA_EVENT_QUALIFIER_T structure contained
an invalid value.

Programmer response: Make sure that this field
contains a valid event qualifier type value.

(98) HWMCA_DE_REQUIRES_QUALIFIER

Explanation: A HwmcaInitialize Data Exchange API
call was made that specified an event mask indicating
that requires additional event qualification information
to be provided.

Programmer response: Make sure to provide the
necessary event qualification information.

(99) HWMCA_TRANSPORT_ERROR

Explanation: A Data Exchange API call was made but
an error was encountered in the transport layer that
was specified to deliver the request data and return the
response data.

Programmer response: Refer to information about the
specific transport layer being used for more details
regarding this error.

(21) • (99)

Appendix C. API return codes 205

Command API call return codes
Following is a list of return codes and their descriptions, which can be returned from the various
Command API call. (The decimal values are shown in parentheses).

(0) HWMCA_CMD_NO_ERROR

Explanation: A HwmcaCommand API call has
completed successfully.

Programmer response: None.

(1) HWMCA_CMD_NO_SUCH_OBJECT

Explanation: A hwmcaCommand API call specified an
object identifier that does not exist.

Programmer response: Check the specified object
identifier to ensure that it is valid and that the API
support is enabled and functioning correctly on the
target console.

(2) HWMCA_CMD_INVALID_DATA_
TYPE

Explanation: A HwmcaCommand API call specified
an invalid data type.

Programmer response: Check the specified data type
value to ensure that is one of the supported values and
that is appropriate for the target object identifier.

(3) HWMCA_CMD_INVALID_DATA_
LENGTH

Explanation: A HwmcaCommand API call specified a
data length value that is not appropriate for the
corresponding data type or is not appropriate for the
target object identifier.

Programmer response: Check to ensure that a length
of zero is used for a data type of
HWMCA_TYPE_NULL and that a length of 1, 2, or 4 is
used for a data type of HWMCA_TYPE_INTEGER.

(4) HWMCA_CMD_INVALID_DATA_ PTR

Explanation: A HwmcaCommand API call specified a
data pointer that is not appropriate for the
corresponding data type.

Programmer response: Check to ensure that a null
pointer is used for a data type of
HWMCA_TYPE_NULL and that a non-null pointer is
used for all other data types.

(5) HWMCA_CMD_INVALID_DATA_
VALUE

Explanation: A HwmcaCommand API call specified a
data value that is not appropriate for the target object
identifier.

Programmer response: Check to make sure that the
data value is one of the allowed value for the target
object identifier.

(6) HWMCA_CMD_INVALID_INIT_ PTR

Explanation: A HwmcaCommand API call specified
null as the pointer to the HWMCA_INITIALIZE_T
structure.

Programmer response: Make sure that this value is
specified as a pointer to a valid
HWMCA_INITIALIZE_T structure.

(7) HWMCA_CMD_INVALID_ID_PTR

Explanation: A HmcaCommand API call specified a
null pointer as the object identifier parameter.

Programmer response: Make sure that this value is
specified as a pointer to a valid object identifier string.

(10) HWMCA_CMD_INVALID_
DATATYPE_PTR

Explanation: A HwmcaCommand API call specified
null as the pointer to the HWMCA_DATATYPE_T
structure used to describe the data to be used for the
command parameter information.

Programmer response: Make sure that this value is
specified as a pointer to an address of a valid
HWMCA_DATATYPE_T structure.

(11) HWMCA_CMD_INVALID_TARGET

Explanation: A HwmcaCommand API call specified
an invalid target.

Programmer response: Check the specified object
identifier to ensure that it is valid and that there is not
already an active command for the specified object.

(13) HWMCA_CMD_INVALID_
PARAMETER

Explanation: A HwmcaCommand API call specified
an invalid parameter.

Programmer response: Make sure all the required
parameters are correctly specified.

(17) HWMCA_CMD_REQUEST_ALLOC_
ERROR

Explanation: A HwmcaCommand PI call encountered
an error trying to allocate some temporary storage for
internal use.

(0) • (17)

206 Application Programming Interfaces

Programmer response: Make sure that enough
memory is available on the requesting machine.

(18) HWMCA_CMD_REQUEST_SEND_
ERROR

Explanation: A HwmcaCommand API encountered an
error trying to send a request to the target console. This
is typically due to a network error of some sort.

Programmer response: Investigate the possibility of a
network error.

(19) HWMCA_CMD_TIMEOUT

Explanation: A HwmcaCommand API timed out
while waiting for a response. The response was not
received within the specified time period.

Programmer response: Make sure that the timeout
value is large enough to allow for the request to be
completed and the response to be returned.

(20) HWMCA_CMD_REQUEST_RECV_
ERROR

Explanation: A HwmcaCommand API encountered an
error trying to receive a response from the target
console. This is typically due to a network error of
some sort.

Programmer response: Investigate the possibility of a
network error.

(21) HWMCA_CMD_SNMP_ERROR

Explanation: A HwmcaCommand API call received a
response that contained an unrecognized error status
value.

Programmer response: Make sure that no errors were
reported on the target console that would have resulted
in incomplete or invalid data to be sent as a response.

(22) HWMCA_CMD_INVALID_TIMEOUT

Explanation: A HwmcaCommand API call was made
with the timeout value specified as zero.

Programmer response: Make sure that an appropriate
non-zero timeout value is specified on the API call.

(23) HWMCA_CMD_INVALID_CMD

Explanation: A HwmcaCommand API call was made
with an invalid command object identifier.

Programmer response: Make sure that the command
object identifier corresponds to a valid command for
the target object.

(24) HWMCA_CMD_OBJECT_BUSY

Explanation: A HwmcaCommand API call was made
specifying a target object identifier for an object that is
currently busy performing another command.

Programmer response: . Retry the call again after the
target object is no longer busy.

(25) HWMCA_CMD_INVALID_OBJECT

Explanation: A HwmcaCommand API call was made
with a target object identifier that is not valid for the
specified command.

Programmer response: Make sure that the command
object identifier corresponds to an appropriate
command for the target object.

(26) HWMCA_CMD_COMMAND_FAILED

Explanation: A HwmcaCommand API call failed due
to an internal error on the target console.

Programmer response: Check the target console for
details regarding the error.

(27) HWMCA_CMD_INITTERM_OK

Explanation: This is a value only used internally and
should never be received by the calling application.

(18) • (27)

Appendix C. API return codes 207

HWMCA_EVENT_COMMAND_RESPONSE return codes
The following values are returned as HWMCA_EVENT_COMMAND_RESPONSE return codes for
HWMCA_ACTIVATE_CBU_COMMAND, HWMCA_UNDO_CBU_COMMAND,
HWMCA_ADD_CAPACITY_COMMAND, and HWMCA_REMOVE_CAPACITY_COMMAND command
requests.

(26) HWMCA_CMD_COMMAND_FAILED

Explanation: A command call failed due to an internal
error on the target console and a more specific failure
code was not provided by the command.

Programmer response: Check the target console for
details regarding the error.

(28) HWMCA_CMD_CBU_DISRUPTIVE_
OK

Explanation: The command request was successful but
requires a system IML for the changes to take effect.

Programmer response: Perform a system IML.

(29) HWMCA_CMD_CBU_PARTIAL_ HW

Explanation: The command request was successful for
the available hardware, but complete success for the
command request could not be achieved (probably due
to defective hardware).

(30) HWMCA_CMD_CBU_NO_SPARES

Explanation: The command request was unsuccessful
because the required hardware was not available.

(31) HWMCA_CMD_CBU_TEMPORARY

Explanation: The command request was successful,
but there was a problem updating the system
SEEPROM so the new capacity will be lost at the next
system IML.

(32) HWMCA_CMD_CBU_NOT_ ENABLED

Explanation: The command request failed because the
CBU feature is not enabled for the target console.

(33) HWMCA_CMD_CBU_NOT_
AUTHORIZED

Explanation: The command request failed because the
target console is not authorized for the requested
command.

(34) HWMCA_CMD_CBU_FAILED

Explanation: The command request failed due to an
internal error.

Programmer response: Check the target console for
details about the failure.

(35) HWMCA_CMD_CBU_ALREADY_
ACTIVE

Explanation: The command request failed because
there is already a previous CBU request in effect.

(36) HWMCA_CMD_CBU_INPROGRESS

Explanation: The command request cannot be
performed at this time because another operation is
being performed at this time.

Programmer response: The command request can be
retried at a later time when the currently executing
operation is complete.

(37) HWMCA_CMD_CBU_CPSAP_
SPLIT_CHG

Explanation: The command request cannot be
performed at this time because the current CP/SAP
allocation for the machine differs from what it was
originally.

Programmer response: The command request can be
retried at a later time after the CP/SAP split matches
the original values for the machine.

(38) HWMCA_CMD_INVALID_
MACHINE_STATE

Explanation: The command request cannot be
performed at this time because the target object is
currently not in an appropriate state (i.e. it is not
powered on).

Programmer response: The command request can be
retried at a later time when the target object is in an
appropriate state.

(39) HWMCA_CMD_NO_RECORDID

Explanation: The command request was unsuccessful
because the specified a capacity record with the
specified identifier does not exist.

Programmer response: The command request can be
retried at a later time with an identifier for an existing
capacity record.

(40) HWMCA_CMD_NO_SW_ MODEL

Explanation: The command request was unsuccessful
because the specified software model is invalid for the
target object.

(26) • (40)

208 Application Programming Interfaces

Programmer response: The command request can be
retried at a later time with a software model that is
valid for the target object.

(41) HWMCA_CMD_NOT_ENOUGH_
RESOURCES

Explanation: The command request was unsuccessful
because the request specifies more resources than are
currently available on the target object.

Programmer response: The command request can be
retried at a later time with a number of resources that
are available on the target object.

(42) HWMCA_CMD_NOT_ENOUGH_
ACTIVE_RESOURCES

Explanation: The command request was unsuccessful
because the request specifies more resources than are
currently active on the target object.

Programmer response: The command request can be
retried at a later time with a number of resources less
than or equal to those that are currently active on the
target object.

(43) HWMCA_CMD_ACT_LESS_
RESOURCES

Explanation: The command request for additional
resources was unsuccessful because the request
specifies a net decrease in the resources for the target
object.

Programmer response: The command request can be
retried at a later time with an increase of resources for
the target object.

(44) HWMCA_CMD_DEACT_MORE_
RESOURCES

Explanation: The command request for a removal of
resources was unsuccessful because the request
specifies a net increase in the resources for the target
object.

Programmer response: The command request can be
retried at a later time with a decrease of resources for
the target object.

(45) HWMCA_CMD_ACT_TYPE_
MISMATCH

Explanation: The command request was unsuccessful
because the type value specified (real or test) was not
valid for the type of capacity record being used.

Programmer response: The command request can be
retried at a later time with a valid type value for the
capacity record.

(46) HWMCA_CMD_API_NOT_ ALLOWED

Explanation: The command request was unsuccessful
because the target Defined CPC was configured to not
allow capacity changes via the Console Application
Programming Interfaces.

Programmer response: In order to be successful,
capacity changes must be allowed for the Console
Application Programming Interfaces via the
Customized API Settings task.

(47) HWMCA_CMD_CDU_IN_ PROGRESS

Explanation: The command request cannot be
performed at this time because a concurrent driver
upgrade operation is being performed at this time.

Programmer response: The command request can be
retried at a later time when the currently executing
operation is complete.

(48) HWMCA_CMD_MIRRORING_
RUNNING

Explanation: The command request cannot be
performed at this time because a support element
mirror operation is being performed at this time.

Programmer response: The command request can be
retried at a later time when the currently executing
operation is complete.

(49) HWMCA_CMD_COMMUNICATIONS_
NOT_ACTIVE

Explanation: The command request cannot be
performed at this time because communication with the
Defined CPC object is not active.

Programmer response: The command request can be
retried at a later time when there is active
communications with the Defined CPC object.

(50) HWMCA_CMD_RECORD_EXPIRED

Explanation: The command request was unsuccessful
because the capacity record being used for the
operation has expired.

Programmer response: The command request can be
retried at a later time with after the capacity record
expiration date has been extended or a different (not
expired) capacity record can be used.

(51) HWMCA_CMD_PARTIAL_CAPACITY

Explanation: The command request was successful,
but not all the resources requested could be made
available. There are two cases that can result in this
return code:

1. The request was issued with priority and not
enough free resources existed to completely satisfy

(41) • (51)

Appendix C. API return codes 209

the request. The additional resources to completely
satisfy the request are pending and will be
associated with the request as soon as they are no
longer being used for other purposes.

2. At the time of the request there were sufficient
resources to completely satisfy the request, but
during while these resources were being brought
online for the request something happened to cause
the number of available resources to no longer be
sufficient (i.e. a defective processor was detected).

(52) HWMCA_CMD_INVALID_REQUEST

Explanation: The command request was unsuccessful
because it is not valid to be performed at this time due
to one of the following conditions.

v An EDM (Enhanced Driver Maintenance) operation
is currently in progress.

v The target of the request is configured to not allow
capacity change API requests.

v The targeted system is not in the correct state to
perform the request.

Programmer response: The command request can be
retried at a later time after the system is in the correct
state to allow the operation.

(53) HWMCA_CMD_ALREADY_ACTIVE

Explanation: The command request was unsuccessful
because there is a different capacity record that is
already active.

Programmer response: The command request can be
retried at a later time after the currently active capacity
record is no longer active or a different (the currently
active) capacity record can be used.

(54) HWMCA_CMD_RESERVE_HELD

Explanation: The command request was unsuccessful
because a task running on the targeted system has
reserved control.

Programmer response: Wait until the task is complete
and retry the command request.

(55) HWMCA_CMD_GENERAL_XML_
PARSING_ERROR

Explanation: The command request was unsuccessful
because the XML specified on the command is not well
formed and could not be parsed properly.

Programmer response: Retry the command request
with a well formed XML document.

(56) HWMCA_CMD_STP_NOT_ENABLED

Explanation: The command request was unsuccessful
because STP is not enabled on the target system.

Programmer response: Verify that the request is
targeted toward a system that has the STP feature
enabled.

(57) HWMCA_CMD_STP_MUST_
TARGET_CTS

Explanation: The command request failed because the
targeted system is not the Current Time Server for the
STP-only Coordinated Timing Network (CTN) or the
system specified to become the Current Time Server
does not match the targeted system.

Programmer response: Verify that the request is
targeted toward the system that will be the Current
Time Server after the command request and resubmit
the request.

(58) HWMCA_CMD_STP_INVALID_
CONFIG_SPECIFIED

Explanation: The command request was unsuccessful
because the specified STP configuration is not valid.

Programmer response: Verify that the current
configuration will support the command request and
that the configuration specified in the command
request is valid. Retry the command request with an
appropriate STP configuration.

(59) HWMCA_CMD_STP_WRONG_CTN

Explanation: The command request was unsuccessful
because the CTN ID of the current STP configuration is
not valid for the request. This is most likely the result
of the configuration changing between the time that the
command request was created and the time the request
was processed.

Programmer response: Verify that the current
configuration will support the command request and
that the configuration specified in the command
request is valid. Then retry the command request with
an appropriate STP configuration.

(60) HWMCA_CMD_STP_NOT_
VALID_FOR_CTS

Explanation: The command request cannot be
processed on the Current Time Server. Certain actions
are not allowed on the Current Time Server because the
result would be disruptive to the entire STP-only CTN.

Programmer response: Verify that the request is
targeted toward the appropriate system.

(52) • (60)

210 Application Programming Interfaces

(61) HWMCA_CMD_STP_IN_ETR_
MIGRATION

Explanation: The command request was unsuccessful
because the CPC is a member of an STP-only CTN that
is migrating back to a Mixed CTN, which uses a
Sysplex Timer. STP-related commands are not allowed
until this procedure is complete.

Programmer response: Determine the appropriate
action after the ETR migration is complete.

(62) HWMCA_CMD_STP_NODE_NOT_
FOUND_IN_SYSTEM_LIST

Explanation: The command request was unsuccessful
because the specified NodeName could not be
converted into a NodeID.

Programmer response: The system referenced in the
NodeName tag needs to be a Defined CPC object on
the HMC console. Add the object to the HMC and retry
the command request.

(63) HWMCA_CMD_STP_CTNID_
TAG_ERROR

Explanation: The command request was unsuccessful
because the CTN ID portion of the set STP
configuration XML was not correct.

Programmer response: Retry the command request
after verifying that the CTN ID information specified is
in the proper format.

(64) HWMCA_CMD_STP_NODE_TAG_
ERROR

Explanation: The command request was unsuccessful
because the Preferred Time Server, Backup Time Server,
or Arbiter portion of the set STP configuration XML
was not correct.

Programmer response: Retry the command request
after verifying that the node information specified is in
the proper format.

(65) HWMCA_CMD_STP_CONFIG_TAG_
NOT_FOUND

Explanation: The command request was unsuccessful
because the STPConfiguration tag was not found in the
set STP configuration XML.

Programmer response: Retry the command request
specifying STPConfiguration as the outermost tag of
the XML document.

(66) HWMCA_CMD_STP_ACTIVE_CTS_
TAG_ERROR

Explanation: The command request was unsuccessful
because the CurrentTimeServer portion of the set STP
configuration XML was not correct.

Programmer response: Retry the command request
verifying that the CurrentTimeServer information
specified is in the proper format.

(67) HWMCA_CMD_STP_INITIALIZE_
INCOMPLETE

Explanation: The command request was unsuccessful
because the specified STP configuration cannot be set
until initialization of the STP-only CTN is complete.
The time zone and leap second values need to be set.

Programmer response: Manually set the time zone
and/or leap second values via the Initialize Time
button on the Network Configuration tab in the System
(Sysplex) Time task and retry the command request.

(68) HWMCA_CMD_STP_INVALID_
STP_ID

Explanation: The command request was unsuccessful
because the STP ID specified on the command was not
correct.

Programmer response: Retry the command request
specifying an STP ID with 1-8 valid characters.

(69) HWMCA_CMD_STP_LINKS_ERROR

Explanation: The command request was unsuccessful
because the communication links between the Preferred
Time Server, Backup Time Server, and/or Arbiter
systems in the STP-only CTN are not active.

Programmer response: Manually check the links
between systems in the STP-only CTN with the roles of
Preferred Time Server, Backup Time Server, and/or
Arbiter or retry the command request with force, if
applicable.

(70) HWMCA_CMD_STP_REQUIRES_
FORCE_TO_CONFIGURE

Explanation: The command request was unsuccessful
because of the current state of the targeted system.
Verification of connections between systems with key
roles in the STP-only CTN is done to ensure that the
configuration will function properly. Once the
connections are verified, the force parameter is required
to ensure that the customer is not creating an island
STP-only CTN.

Programmer response: Retry the set configuration
command request with force, if applicable.

(61) • (70)

Appendix C. API return codes 211

Data exchange and command API (REXX version) return codes
The following return codes are specific to the REXX version of the Data Exchange and Command APIs.

(1000) HWMCA_RX_INVALID_STEM_VAR

Explanation: The name of a REXX stem variable that
was specified on one of the REXX API calls did not end
with a “.”.

Programmer response: Make sure the stem variable
name ends with a “.”.

(1000)

212 Application Programming Interfaces

Appendix D. APIs for Java (com.ibm.hwmca.api)

The purpose of the com.ibm.hwmca.api package is to allow Java™ applications, local or remote, the
ability to exchange data related to the objects that the Console application manages. Specifically, this
support allows other applications to request the Console application to:
v Query (Get/Get-Next) the attributes of objects
v Change (Set) certain attributes of objects
v Receive notification of significant events occurring to objects
v Generate enterprise-specific Simple Network Management Protocol traps for significant events

occurring to objects.

The com.ibm.hwmca.api package uses the Simple Network Management Protocol (SNMP) as the
transport mechanism. The attributes of objects can be queried/changed through the underlying SNMP
Set, Get, Get-Next requests, while event notification is accomplished through the user of the
enterprise-specific SNMP Trap message. The underlying SNMP protocol is encapsulated in several APIs
in order to reduce the complexities for the application programmer. The com.ibm.hwmca.api package is
part of the HWMCAAPI.JAR jar file which is located in the D:\TOOLKIT directory of the Hardware
Management Console for Version 2.9.0 or earlier. The most up to date copy of this file is available on
Resource Link at http://www.ibm.com/servers/resourcelink. Click Services, and then click API.

For documentation describing this Java application, see Application Programming Interfaces for Java.

© Copyright IBM Corp. 2000, 2013 213

214 Application Programming Interfaces

Appendix E. Object Attribute Availability

Except for the attributes found in Table 1, it can be assumed that each object attribute described in
Chapter 4, “Console application managed objects,” on page 75 is valid for any level of object. The
following table defines the required level of object for each attribute.

Table 1. Level of objects required on attributes

Attribute Availability

Console Attributes

Version Available on consoles version 2.9.2 or later, or Support
Element console 1.8.2 with the latest level of microcode
applied.

Internet Protocol (IP) Addresses Available on consoles version 2.10.0 or later

Engineering Change (EC)/Microcode Level (MCL) Available on consoles version 2.10.0 or later

Defined CPC attributes

Processor running time type Available for Defined CPCs version 1.8.2 or later.

Processor running time Available for Defined CPCs version 1.8.2 or later.

End timeslice if CPC enters a wait state Available for Defined CPCs version 1.8.2 or later.

On/Off Capacity on Demand (On/Off CoD) installed Available for Defined CPCs version 2.9.0 or later.

On/Off Capacity on Demand (On/Off CoD) activated Available for Defined CPCs version 2.9.0 or later.

On/Off Capacity on Demand (On/Off CoD) enabled Available for Defined CPCs version 2.9.0 or later.

On/Off Capacity on Demand (On/Off CoD) activation
date

Available for Defined CPCs version 2.9.0 or later.

List of group profiles Available for Defined CPCs version 2.9.2 or later.

Temporary capacity records Available for Defined CPCs version 2.10.0 or later.

Permanent software model Available for Defined CPCs version 2.10.0 or later.

Permanent plus billable software model Available for Defined CPCs version 2.10.0 or later.

Permanent plus all temporary software model Available for Defined CPCs version 2.10.0 or later.

Permanent MSU Available for Defined CPCs version 2.10.0 or later.

Permanent plus billable MSU Available for Defined CPCs version 2.10.0 or later.

Permanent plus all temporary MSU Available for Defined CPCs version 2.10.0 or later.

General purpose processors Available for Defined CPCs version 2.10.0 or later.

Service assist processors Available for Defined CPCs version 2.10.0 or later.

Application Assist Processor (zAAP) processors Available for Defined CPCs version 2.10.0 or later.

Integrated Facility for Linux (IFL) processors Available for Defined CPCs version 2.10.0 or later.

Internal Coupling Facility (ICF) processors Available for Defined CPCs version 2.10.0 or later.

Integrated Information Processors (zIIP) processors Available for Defined CPCs version 2.10.0 or later.

Defective processors Available for Defined CPCs version 2.10.0 or later.

Spare processors Available for Defined CPCs version 2.10.0 or later.

Pending processors Available for Defined CPCs version 2.10.0 or later.

Temporary capacity change allowed Available for Defined CPCs version 2.10.0 or later.

© Copyright IBM Corp. 2000, 2013 215

Table 1. Level of objects required on attributes (continued)

Attribute Availability

Version Available for Defined CPCs version 2.9.2 or later or
version 1.8.2 with the latest level of microcode applied.

Automatic switch enabled Available for Defined CPCs version 1.7.3 or later.

Server Time Protocol (STP) configuration Available for Defined CPCs, with STP enabled, 2.9.2 or
later or 2.9.0 and 1.8.2 with the latest available
microcode.

Pending General Purpose Processors Available for Defined CPCs version 2.10.1 or later.

Pending Service Assist Processors Available for Defined CPCs version 2.10.1 or later.

Pending Application Assist Processor (zAAP) Processors Available for Defined CPCs version 2.10.1 or later.

Pending Integrated Facility for Linux (IFL) Processors Available for Defined CPCs version 2.10.1 or later.

Pending Internal Coupling Facility (ICF) Processors Available for Defined CPCs version 2.10.1 or later.

Pending Integrated Information Processors (zIIP)
Processors

Available for Defined CPCs version 2.10.1 or later.

CPC Image attributes

Initial Application Assist Processor processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Initial Application Assist Processor processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Minimum Application Assist Processor processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Maximum Application Assist Processor processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Application Assist Processor processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Application Assist Processor processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Initial Integrated Facility for Linux processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Initial Integrated Facility for Linux processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Minimum Integrated Facility for Linux processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Maximum Integrated Facility for Linux processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Integrated Facility for Linux processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Integrated Facility for Linux processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Initial Integrated Information Processors processing
weight

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

Initial Integrated Information Processors processing
weight capped

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

Minimum Integrated Information Processors processing
weight

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

Maximum Integrated Information Processors processing
weight

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

216 Application Programming Interfaces

Table 1. Level of objects required on attributes (continued)

Attribute Availability

Current Integrated Information Processors processing
weight

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

Current Integrated Information Processors processing
weight capped

Available for CPC Images running on Defined CPCs
version 2.9.0 or later.

Program Status Word (PSW) information Available for CPC Images running on Defined CPCs
version 2.10.0 or later.

IPL Token Available for CPC Images running on Defined CPCs
version 2.10.1 or later.

Group Profile capacity Available for CPC Images running on Defined CPCs
version 2.9.2 or later.

Coupling Facility attributes

Initial Internal Coupling Facility processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Initial Internal Coupling Facility processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Minimum Internal Coupling Facility processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Maximum Internal Coupling Facility processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Internal Coupling Facility processing weight Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Current Internal Coupling Facility processing weight
capped

Available for CPC Images running on Defined CPCs
version 1.8.2 or later.

Group Profile attributes

Capacity Available for Defined CPCs version 2.9.2 or later.

Image Activation Profile attributes

Group profile name Available for Defined CPCs version 2.9.2 or later.

Number of dedicated Application Assist Processor (zAAP)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved dedicated Application Assist
Processors (zAAP) processors

Available for Defined CPCs version 2.9.2 or later.

Number of dedicated Integrated Facility for Linux (IFL)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved dedicated Integrated Facility for
Linux (IFL) processors

Available for Defined CPCs version 2.9.2 or later.

Number of dedicated Internal Coupling Facility (ICF)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved dedicated Internal Coupling Facility
(ICF) processors

Available for Defined CPCs version 2.9.2 or later.

Number of dedicated Integrated Information Processors
(zIIP) processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved dedicated Integrated Information
Processors (zIIP) processors

Available for Defined CPCs version 2.9.2 or later.

Number of shared general purpose processors Available for Defined CPCs version 2.9.2 or later.

Number of reserved shared general purpose processors Available for Defined CPCs version 2.9.2 or later.

Appendix E. Object Attribute Availability 217

Table 1. Level of objects required on attributes (continued)

Attribute Availability

Number of shared Application Assist Processor (zAAP)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved shared Application Assist Processor
(zAAP) processors

Available for Defined CPCs version 2.9.2 or later.

Number of shared Integrated Facility for Linux (IFL)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved shared Integrated Facility for Linux
(IFL) processors

Available for Defined CPCs version 2.9.2 or later.

Number of shared Internal Coupling Facility (ICF)
processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved shared Internal Coupling Facility
(ICF) processors

Available for Defined CPCs version 2.9.2 or later.

Number of shared Integrated Information Processors
(zIIP) processors

Available for Defined CPCs version 2.9.2 or later.

Number of reserved shared Integrated Information
Processors (zIIP) processors

Available for Defined CPCs version 2.9.2 or later.

Capacity Record attributes

All attributes Available for Defined CPCs version 2.10.0 or later.

218 Application Programming Interfaces

Appendix F. XML descriptions

XML strings are used in several places throughout this document. This appendix defines the format of
this XML and provides examples of each. It is important to keep in mind that while the XML returned
and provided on input must be well formed and syntactically correct, this XML is not a complete
document, but rather an XML fragment as illustrated with the examples. XML is used in the following
areas of the Console Application Programming Interfaces.

Add capacity command
The input parameters for the HWMCA_ADD_CAPACITY_COMMAND on page 39 is specified using
XML. Following is an example of this input; refer to the XML schema at the end of this appendix for the
complete syntax definition of this XML.

Remove capacity command
The input parameters for the HWMCA_REMOVE_CAPACITY_COMMAND on page 40 is specified using
XML. Following is an example of this input; refer to the XML schema at the end of this appendix for the
complete syntax definition of this XML.

<!--
This example XML document illustrate the markup used to perform the following
addition of temporary capacity :
- change the general processors to a model A99
- add 3 AAP processors
- indicate the activation should take not priority
- indicate the activation is not a "test", but a "real" activation
-->
<add>

<recordid>12345</recordid>
<softwaremodel>A99</softwaremodel>
<processorinfo>

<type>AAP</type>
<procstep>3</procstep>

</processorinfo>
<priority>false</priority>
<test>false</test>

</add>

<!--
This example XML document illustrate the markup used to perform the following
removal of temporary capacity :
- change the general processors to a model A99
- remove 3 AAP processors
-->
<remove>

<recordid>12345</recordid>
<softwaremodel>A99</softwaremodel>
<processorinfo>

<type>AAP</type>
<procstep>3</procstep>

</processorinfo>
</remove>

© Copyright IBM Corp. 2000, 2013 219

Capacity record query
The output of a Get operation for a Capacity Record Object is an XML string that describes the record.
Following is an example of this output; refer to the XML schema at the end of this appendix for the
complete syntax definition of this XML.

<!--
This example XML document illustrates the markup used to describe
a capacity record that allows for:

- 2 additional CPs with 2 additional speed steps
- currently 1 CP with 1 speed step are active

-->
<record xmlns="http://www.ibm.com/hwmca/api"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/

Test%20Java%20Code/xml ebod.xsd">
<!-- Record id -->
<recordid>12345</recordid>
<!-- Offering type -->
<recordtype>OOCOD</recordtype>
<!-- Activation status -->
<status>Real</status>
<!-- Activation processor information. -->
<processorinfo>

<!-- Processor type. -->
<type>CP</type>
<!-- Processor count. -->
<procstep>+1</procstep>
<!-- Speed count. -->
<speedstep>+1</speedstep>
<!-- Maximum number of processors. -->
<max>2</max>
<!-- Remaining processor days. (-1 means unlimited) -->
<remainingprocdays>99</remainingprocdays>
<!-- Remaining MSU days. (-1 means unlimited) -->
<remainingmsudays>99</remainingmsudays>

</processorinfo>

<processorinfo>
<!-- Processor type. -->
<type>AAP</type>
<!-- Processor count. -->
<procstep>+1</procstep>
<!-- Maximum number of processors. -->
<max>2</max>
<!-- Remaining processor days. (-1 means unlimited) -->
<remainingprocdays>99</remainingprocdays>
<!-- Remaining MSU days. (-1 means unlimited) -->
<remainingmsudays>99</remainingmsudays>

</processorinfo>
<!-- Activation start date (UTC). -->
<activationstart>2006-07-04T11:11:11Z</activationstart>
<!-- Activation expiration date. -->
<activationexpiration>2006-08-04T11:11:11Z</activationexpiration>
<!-- Record expiration date. -->
<recordexpiration>2006-12-31T23:59:59Z</recordexpiration>
<!-- Maximum real activation days. (-1 means unlimited) -->
<maxrealdays>22</maxrealdays>
<!-- Maximum test activation days. (-1 means unlimited) -->
<maxtestdays>-1</maxtestdays>
<!-- Remaining real activation days. (-1 means unlimited) -->
<remainingrealdays>15</remainingrealdays>
<!-- Remaining test activation days. (-1 means unlimited) -->
<remainingtestdays>-1</remainingtestdays>
<!-- Target information. -->

220 Application Programming Interfaces

<target>
<!-- Processor count. -->
<procstep>-1</procstep>
<!-- Speed count. -->
<speedstep>-1</speedstep>
<!-- Software model. -->
<softwaremodel>A100</softwaremodel>
<!-- Billable MSU cost. -->
<billablemsucost>100</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>-10</billablemsudelta>

</target>

Appendix F. XML descriptions 221

Engineering Change (EC)/Microcode Level (MCL) query
The output of a Get operation for the Engineering Change (EC)/Microcode Level (MCL) attribute of a
Defined CPC or Console Object is an XML string. Following is an example of this output; refer to the
XML schema at the end of this appendix for the complete syntax definition of this XML.

<target>
<!-- Processor count. -->
<procstep>-1</procstep>
<!-- Software model. -->
<softwaremodel>A104</softwaremodel>
<!-- Billable MSU cost. -->
<billablemsucost>104</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>-6</billablemsudelta>

</target>
<target>

<!-- Speed count. -->
<speedstep>-1</speedstep>
<!-- Software model. -->
<softwaremodel>A105</softwaremodel>
<!-- Real MSU cost. -->
<billablemsucost>105</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>-5</billablemsudelta>

</target>
<target>

<!-- Speed count. -->
<speedstep>+1</speedstep>
<!-- Software model. -->
<softwaremodel>A115</softwaremodel>
<!-- Billable MSU cost. -->
<billablemsucost>115</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>5</billablemsudelta>

</target>
<target>

<!-- Processor count. -->
<procstep>+1</procstep>
<!-- Software model. -->
<softwaremodel>A116</softwaremodel>
<!-- Billable MSU cost. -->
<billablemsucost>116</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>6</billablemsudelta>

</target>
<target>

<!-- Processor count. -->
<procstep>+1</procstep>
<!-- Speed count. -->
<speedstep>+1</speedstep>
<!-- Software model. -->
<softwaremodel>A120</softwaremodel>
<!-- Billable MSU cost. -->
<billablemsucost>120</billablemsucost>
<!-- Billable MSU delta -->
<billablemsudelta>10</billablemsudelta>

</target>
</record>

222 Application Programming Interfaces

STP configuration information
The output of a Get operation for the STP Information attribute of a Defined CPC object as well as the
input required for the HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND is an XML string.
Following is an example of this data; refer to the XML schema at the end of this appendix for the
complete syntax definition of this XML.

XML schema
Following is the XML schema used to define the syntax of the XML used as input and output of the
Console Application Programming Interfaces.

<!--
This example XML document illustrates the markup used to describe
EC/MCL information with one EC having only retrieved MCLs.
-->
<sysinfo>

<ec>
<number>A12345</number>
<partnumber>098765432</partnumber>
<type>Console Application</type>
<description>Console Application code</description>
<mcl>

<type>retrieved</type>
<level>009</level>
<lastupdate>2007-01-01T11:59:00Z</lastupdate>

</mcl>
</ec>

</sysinfo>

<STPConfiguration>
<CTNID>

<STPID>stpTst1</STPID>
</CTNID>
<Preferred>

<NodeName>T25A</NodeName>
<NodeID>

<Type>002094</Type>
<Model>S18</Model>
<Manuf>IBM</Manuf>
<PoManuf>00</PoManuf>
<SeqNum>00000000T25A</SeqNum>

</NodeID>
</Preferred>
<Backup>

<NodeName>POLLUX</NodeName>
</Backup>
<Arbiter>

<NodeID>
<Type>002086</Type>
<Model>A04</Model>
<Manuf>IBM</Manuf>
<PoManuf>00</PoManuf>
<SeqNum>000000000T03</SeqNum>

</NodeID>
</Arbiter>
<CurrentTimeServer>Backup</CurrentTimeServer>

</STPConfiguration>

Appendix F. XML descriptions 223

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/hwmca/api"
xmlns="http://www.ibm.com/hwmca/api"
elementFormDefault="qualified">

<xsd:annotation>
<xsd:documentation>

This is the first version of the XML schema
used to describe the XML that can be used as
input or returned as output from the Console
Application Programming Interfaces. As future
additions are made to this schema the intent is
that it will remain compatible with the earlier
version of the schema.

</xsd:documentation>
</xsd:annotation>

<!--
Temporary Capacity related XML definitions.
-->

<!--
Used to define the type for a processor. The currently valid values for
this element are:

AAP - Application Assist Processor
IFL - Integrated Facility for Linux processor
ICF - Internal Coupling Facility processor
IIP - Integrated Information Processors processor
SAP - System Assist processor

-->
<xsd:element name="type" type="xsd:string"/>
<!--
Used to define the identifier for a capacity record.
-->

<xsd:element name="recordid" type="xsd:string"/>

224 Application Programming Interfaces

<!--
Used to define the number of processor steps for a specific type of
processor compared to some base point.
-->
<xsd:element name="procstep" type="xsd:integer"/>
<!--
Used to define the number of processor speed steps for a specific type of
processor compared to some base point.
-->
<xsd:element name="speedstep" type="xsd:integer"/>
<!--
Used to define the software model for a specific processor configuration.
-->
<xsd:element name="softwaremodel" type="xsd:string"/>

<!--
Used to define if a capacity request has priority.
-->
<xsd:element name="priority" type="xsd:boolean" default="false"/>
<!--
Used to define if a capacity request is for test or real purposes.
-->
<xsd:element name="test" type="xsd:boolean"/>
<!--
The "processorinfo" element define information about a processor.
The information that can be specified with this tag includes:

- processor type (required)
- number of processor steps

-->
<xsd:element name="processorinfo">

<xsd:complexType>
<xsd:all>

<xsd:element ref="type"/>
<xsd:element ref="procstep" minOccurs="0"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<!--
Used to define information specific to a capacity record.
-->
<xsd:complexType name="recordinfo">

<xsd:sequence>
<xsd:element ref="recordid" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="softwaremodel" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="processorinfo" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<!--
Used to define the parameters to use for the addition of temporary
capacity. The processor steps/software model specified in the element are
specified with relation to the current configuration of the system.
-->
<xsd:complexType name="addtype">

<xsd:complexContent>
<xsd:extension base="recordinfo">

<xsd:sequence>
<xsd:element ref="priority"/>
<xsd:element ref="test"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Appendix F. XML descriptions 225

<xsd:element name="add" type="addtype"/>
<!--
Used to define the parameters to use for removal of temporary
capacity. The processor steps/software model specified in the element are
specified with relation to the current configuration of the system.
-->

<xsd:element name="remove" type="recordinfo"/>

<!--
Used to define the processor information for a capacity record.

-->
<xsd:complexType name="recordprocessors">

<xsd:all>
<!-- Processor type. -->
<xsd:element ref="type"/>
<!-- Processor count. -->
<xsd:element ref="procstep" minOccurs="0"/>
<!-- Speed count. -->
<xsd:element ref="speedstep" minOccurs="0"/>
<!-- Maximum number of processors. -->
<xsd:element name="max" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Remaining processor days. (-1 means unlimited) -->
<xsd:element name="remainingprocdays" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Remaining MSU days. (-1 means unlimited) -->
<xsd:element name="remainingmsudays" type="xsd:integer" minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>
<!--
Used to define information for an activation/deactivation target of a capacity record.

-->
<xsd:complexType name="target">

<xsd:all>
<!-- Processor count. -->
<xsd:element ref="procstep" minOccurs="0"/>
<!-- Speed count. -->
<xsd:element ref="speedstep" minOccurs="0"/>
<!-- Software model. -->
<xsd:element ref="softwaremodel" minOccurs="1"/>
<!-- Billable MSU cost. -->
<xsd:element name="billablemsucost" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Billable MSU delta -->
<xsd:element name="billablemsudelta" type="xsd:integer" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

226 Application Programming Interfaces

<!--
Used to define a capacity record.
-->
<xsd:complexType name="recordtype">

<xsd:sequence>
<!-- Record id -->
<xsd:element ref="recordid" minOccurs="1" maxOccurs="1"/>
<!-- Offering type -->
<xsd:element name="recordtype" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<!-- Activation status -->
<xsd:element name="status" minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Test"/>
<xsd:enumeration value="Real"/>
<xsd:enumeration value="None"/>
<xsd:enumeration value="Available"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<!-- Activation processor information. -->
<xsd:element name="processorinfo" type="recordprocessors" minOccurs="1" maxOccurs="unbounded"/>
<!-- Activation start date. -->
<xsd:element name="activationstart" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>
<!-- Activation expiration date. -->
<xsd:element name="activationexpiration" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>
<!-- Record expiration date. -->
<xsd:element name="recordexpiration" type="xsd:dateTime" minOccurs="1" maxOccurs="1"/>
<!-- Maximum real activation days. (-1 means unlimited) -->
<xsd:element name="maxrealdays" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Maximum test activation days. (-1 means unlimited) -->
<xsd:element name="maxtestdays" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Remaining real activation days. (-1 means unlimited) -->
<xsd:element name="remainingrealdays" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Remaining test activation days. (-1 means unlimited) -->
<xsd:element name="remainingtestdays" type="xsd:integer" minOccurs="1" maxOccurs="1"/>
<!-- Target information. -->
<xsd:element name="target" type="target" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

Appendix F. XML descriptions 227

<xsd:element name="record" type="recordtype"/>

<!--
EC/MCL Information XML definitions.
-->
<!--
Used to define MicroCode Level (MCL) information.
-->
<xsd:complexType name="mcl">

<xsd:sequence>
<xsd:element name="type" minOccurs="1" maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="retrieved"/>
<xsd:enumeration value="installed"/>
<xsd:enumeration value="activated"/>
<xsd:enumeration value="accepted"/>
<xsd:enumeration value="removed"/>
<xsd:enumeration value="installableconcurrent"/>
<xsd:enumeration value="removableconcurrent"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="level" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="lastupdate" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

<!--
Used to define pending action information.
-->
<xsd:simpleType name="actiontype">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="ChannelConfig"/>
<xsd:enumeration value="CouplingFacilityReactivation"/>
<xsd:enumeration value="PoweronResetTracking"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="actionactivation">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="current"/>
<xsd:enumeration value="next"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="action">
<xsd:attribute name="type" use="required" type="actiontype"/>
<xsd:attribute name="activation" use="required" type="actionactivation"/>
<xsd:attribute name="pending" type="xsd:boolean" use="required"/>

</xsd:complexType>
<xsd:complexType name="pending">

<xsd:sequence>
<xsd:element name="action" type="action" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

228 Application Programming Interfaces

<!--
Used to define Engineering Change (EC) information.
-->
<xsd:complexType name="ec">

<xsd:sequence>
<xsd:element name="number" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="partnumber" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="type" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="description" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="mcl" type="mcl" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<!--
Used to define Engineering Change (EC) / MicroCode Level (MCL) information.
-->
<xsd:element name="sysinfo">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="pending" type="pending" minOccurs="0" maxOccurs="1"/>
<xsd:element name="ec" type="ec" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!--
Program Status Word (PSW) Information XML definitions.
-->
<!--
Used to define Program Status Word (PSW) information for a single processor.
-->
<xsd:complexType name="pswinfo">

<xsd:sequence>
<xsd:element name="psw" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="cpid" type="xsd:string" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<!--
Used to define CPC Image Program Status Word (PSW) information.
-->
<xsd:element name="imagepswinfo">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="pswinfo" type="pswinfo" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Appendix F. XML descriptions 229

<!--
STP related XML definitions.
-->

<!--
Used to define the STP ID.
Limited to 8 alpha-numeric (plus ’_’ & ’-’) characters.
-->
<xsd:simpleType name="STPID">

<xsd:restriction base="xsd:string">
<xsd:minLength value="0"/>
<xsd:maxLength value="8"/>
<xsd:pattern value="([0-9a-zA-Z_\-])*"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the ETR ID.
Limited to 2 numeric characters. (0-31)
-->
<xsd:simpleType name="ETRID">

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="31"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the CTN ID.

For output, if not in an STP-only or Mixed CTN, the STP ID will be empty
-->
<xsd:complexType name="CTNID">

<xsd:all>
<!-- Used to define the STP ID of the CTN. -->
<xsd:element name="STPID" type="STPID" minOccurs="1" maxOccurs="1"/>
<!-- Used to define the ETR ID of the CTN. -->
<xsd:element name="ETRID" type="ETRID" minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

<!--
Used to define the type of processor.
Limited to 6 characters.
-->
<xsd:simpleType name="Type">

<xsd:restriction base="xsd:string">
<xsd:minLength value="6"/>
<xsd:maxLength value="6"/>

</xsd:restriction>
</xsd:simpleType>

230 Application Programming Interfaces

<!--
Used to define the model of the processor.
Limited to 3 characters.
-->
<xsd:simpleType name="Model">

<xsd:restriction base="xsd:string">
<xsd:minLength value="3"/>
<xsd:maxLength value="3"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the manufacturer of the processor.
Limited to 3 characters.
-->
<xsd:simpleType name="Manuf">

<xsd:restriction base="xsd:string">
<xsd:minLength value="3"/>
<xsd:maxLength value="3"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the plant of manufacturer of the processor.
Limited to 2 characters.
-->
<xsd:simpleType name="PoManuf">

<xsd:restriction base="xsd:string">
<xsd:minLength value="2"/>
<xsd:maxLength value="2"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the sequence number of the processor.
Limited to 12 characters.
-->
<xsd:simpleType name="SeqNum">

<xsd:restriction base="xsd:string">
<xsd:minLength value="12"/>
<xsd:maxLength value="12"/>

</xsd:restriction>
</xsd:simpleType>

Appendix F. XML descriptions 231

<!--
Used to define the Node ID of the processor.
-->
<xsd:complexType name="NodeID">

<xsd:all>
<!-- Used to define the type of the CPC. -->
<xsd:element name="Type" type="Type" minOccurs="1" maxOccurs="1"/>
<!-- Used to define the model of the CPC. -->
<xsd:element name="Model" type="Model" minOccurs="1" maxOccurs="1"/>
<!-- Used to define the manufacturer of the CPC. -->
<xsd:element name="Manuf" type="Manuf" minOccurs="1" maxOccurs="1"/>
<!-- Used to define the plant of manufacturer of the CPC. -->
<xsd:element name="PoManuf" type="PoManuf" minOccurs="1" maxOccurs="1"/>
<!-- Used to define the sequence number of the CPC. -->
<xsd:element name="SeqNum" type="SeqNum" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

<!--
Used to define the name of the processor.
Limited to 8 characters.
-->
<xsd:simpleType name="NodeName">

<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="8"/>

</xsd:restriction>
</xsd:simpleType>

<!--
Used to define the Node of the processor.

For input, there must be at least one of these specified.
If both are specified, the NodeID will take precedence.

For output, at least one is guaranteed.
-->
<xsd:complexType name="NodeDef">

<xsd:all>
<!-- Used to define Node ID to identify the CPC. -->
<xsd:element name="NodeID" type="NodeID" minOccurs="0" maxOccurs="1"/>
<!-- Used to define Node Name to identify the CPC. -->
<xsd:element name="NodeName" type="NodeName" minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

<!--
Used to define the Current Time Server of the CTN.
Limited to "Preferred" and "Backup".
-->
<xsd:simpleType name="CurrentTimeServer">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Preferred"/>
<xsd:enumeration value="Backup"/>

</xsd:restriction>
</xsd:simpleType>

232 Application Programming Interfaces

<!--
Used to define STP configuration information.

For input:
Only STP-only configurations are allowed to be configured.
The CTNID is not required unless changing the CTNID of the STP-only CTN.
The Preferred node definition is required.
-->
<xsd:element name="STPConfiguration">

<xsd:complexType>
<xsd:all>

<!-- Used to define new CTN ID. -->
<xsd:element name="CTNID" type="CTNID" minOccurs="0" maxOccurs="1"/>
<!-- Used to define new Preferred CPC. -->
<xsd:element name="Preferred" type="NodeDef" minOccurs="0" maxOccurs="1"/>
<!-- Used to define new Backup CPC. -->
<xsd:element name="Backup" type="NodeDef" minOccurs="0" maxOccurs="1"/>
<!-- Used to define new Arbiter CPC. -->
<xsd:element name="Arbiter" type="NodeDef" minOccurs="0" maxOccurs="1"/>
<!-- Used to define which system is going to be the Current Time Server CPC. -->
<xsd:element name="CurrentTimeServer" type="CurrentTimeServer" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Appendix F. XML descriptions 233

234 Application Programming Interfaces

Appendix G. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 USA

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “ AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2000, 2013 235

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at “Copyright and trademark
information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linux Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Windows is a trademark or registered trademark of Microsoft Corporation.

Other product and service names might be trademarks of IBM or other companies.

Electronic emission notices
The following statements apply to this IBM product. The statement for other IBM products intended for
use with this product will appear in their accompanying manuals.

Federal Communications Commission (FCC) Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with
the instructions contained in the installation manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause harmful interference,
in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission
limits. IBM is not responsible for any radio or television interference caused by using other than
recommended cables and connectors, by installation or use of this equipment other than as specified in

236 Application Programming Interfaces

http://www.ibm.com/legal/copytrade.shtml

the installation manual, or by any other unauthorized changes or modifications to this equipment.
Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

Canadian Department of Communications Compliance Statement

This Class A digital apparatus complies with Canadian ICES-003.

Avis de conformlté aux normes du ministère des Communications du Canada

Cet appareil numérique de la classe A est conform à la norme NMB-003 du Canada.

European Union (EU) Electromagnetic Compatibility Directive

This product is in conformity with the protection requirements of EU Council Directive 2004/108/EC on
the approximation of the laws of the Member States relating to electromagnetic compatibility. IBM cannot
accept responsibility for any failure to satisfy the protection requirements resulting from a
non-recommended modification of the product, including the fitting of non-IBM option cards.

This product has been tested and found to comply with the limits for Class A Information Technology
Equipment according to European Standard EN 55022. The limits for Class equipment were derived for
commercial and industrial environments to provide reasonable protection against interference with
licensed communication equipment.

Warning: This is a Class A product. In a domestic environment, this product may cause radio interference
in which case the user may be required to take adequate measures.

European Community contact:
IBM Deutschland GmbH
Technical Regulations, Department M372
IBM-Allee 1, 71139 Ehningen, Germany
Telephone: 0049 (0) 7032 15-2941
email: lugi@de.ibm.com

EC Declaration of Conformity (In German)

Deutschsprachiger EU Hinweis: Hinweis für Geräte der Klasse A EU-Richtlinie zur
Elektromagnetischen Verträglichkeit

Dieses Produkt entspricht den Schutzanforderungen der EU-Richtlinie 89/336/EWG zur Angleichung der
Rechtsvorschriften über die elektromagnetische Verträglichkeit in den EU-Mitgliedsstaaten und hält die
Grenzwerte der EN 55022 Klasse A ein.

Um dieses sicherzustellen, sind die Geräte wie in den Handbüchern beschrieben zu installieren und zu
betreiben. Des Weiteren dürfen auch nur von der IBM empfohlene Kabel angeschlossen werden. IBM
übernimmt keine Verantwortung für die Einhaltung der Schutzanforderungen, wenn das Produkt ohne
Zustimmung der IBM verändert bzw. wenn Erweiterungskomponenten von Fremdherstellern ohne
Empfehlung der IBM gesteckt/eingebaut werden.

EN 55022 Klasse A Geräte müssen mit folgendem Warnhinweis versehen werden:

Appendix G. Notices 237

"Warnung: Dieses ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich
Funk-Störungen verursachen; in diesem Fall kann vom Betreiber verlangt werden, angemessene
Maßnahmen zu ergreifen und dafür aufzukommen."

Deutschland: Einhaltung des Gesetzes über die elektromagnetische Verträglichkeit von Geräten

Dieses Produkt entspricht dem “Gesetz über die elektromagnetische Verträglichkeit von Geräten
(EMVG)“. Dies ist die Umsetzung der EU-Richtlinie 89/336/EWG in der Bundesrepublik Deutschland.

Zulassungsbescheinigung laut dem Deutschen Gesetz über die elektromagnetische Verträglichkeit von
Geräten (EMVG) vom 18. September 1998 (bzw. der EMC EG Richtlinie 89/336) für Geräte der Klasse
A.

Dieses Gerät ist berechtigt, in Übereinstimmung mit dem Deutschen EMVG das EG-Konformitätszeichen
- CE - zu führen.

Verantwortlich für die Konformitätserklärung nach Paragraf 5 des EMVG ist die IBM Deutschland
GmbH, 70548 Stuttgart.

Informationen in Hinsicht EMVG Paragraf 4 Abs. (1) 4:

Das Gerät erfüllt die Schutzanforderungen nach EN 55024 und EN 55022 Klasse A.

update: 2004/12/07

People's Republic of China Class A Compliance Statement

This is a Class A product. In a domestic environment, this product may cause radio interference in which
case the user may need to perform practical actions.

Japan Class A Compliance Statement

This is a Class A product based on the standard of the VCCI Council. If this equipment is used in a
domestic environment, radio interference may occur, in which case, the user may be required to take
corrective actions.

Korean Class A Compliance Statement

238 Application Programming Interfaces

Taiwan Class A Compliance Statement

Warning: This is a Class A product. In a domestic environment, this product may cause radio interference
in which case the user will be required to take adequate measures.

� ��� ���(�)�	
��
���� � �����
��� �� ���� � �� ����� �� , !"#�
$%&' ���� *� +
�	 ��-.

A

Appendix G. Notices 239

240 Application Programming Interfaces

Glossary

This glossary includes terms and definitions from:
v The Dictionary of Computing, SC20-1699.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has
an opposed or substantively different
meaning.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, buy not synonymous meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in the glossary.

action One of the defined tasks that an
application performs. Actions modify the
properties of an object or manipulate the
object in some way.

active window
The window that users are currently
interacting with. This is the window that
receives keyboard input.

address
A value that identifies a register, a
particular part of storage, a data source,
or a data sink. The value is represented
by one or more characters. (T)

To refer to a device or an item of data by
its address. (I) (A)

The location in the storage of a computer
where data is stored.

In data communication, the unique code
assigned to each device or workstation
connected to a network.

The identifier of a location, source, or
destination.

alert A unit of information, usually indicating
the loss of a system resource, passed from
one machine or program to a host to
signal an error.

An error message sent to the system
services control point (SSCP) at the host
system.

allocate
To assign a resource, such as a disk, to
perform a task.

application
The use to which an information
processing system is put, for example, a
payroll application, an airline reservation
application, a network application.

A collection of software components used
to perform specific types of work on a
computer.

application program
A program that is specific to the solution
of an application problem. (T)

A program written for or by a user that
applies to the user’s work, such as a
program that does inventory control or
payroll.

A program used to connect and
communicate with stations in a network,
enabling users to perform
application-oriented activities.

asynchronous
Pertaining to two or more processes that

© Copyright IBM Corp. 2000, 2013 241

do not depend upon the occurrence of
specific events such as common timing
signals. (T)

Without regular time relationship;
unexpected or unpredictable with respect
to the execution of program instructions.
Contrast with synchronous.

bit Either of the digits 0 or 1 when used in
the binary numeration system. (T) See
also byte.

block A string of data elements recorded or
transmitted as a unit. The element may be
characters, words, or physical records. (T)

buffer A routine or storage used to compensate
for a difference in rate of flow of data, or
time of occurrence of events, when
transferring data from one device to
another. (A)

To allocate and schedule the use of
buffers. (A)

A portion of storage used to hold input or
output data temporarily.

byte A string that consists of a number of bits,
treated as a unit, and representing a
character. (T)

A binary character operated upon as a
unit and usually shorter than a computer
word. (A)

A string that consists of a particular
number of bits, usually eight, that is
treated as a unit, and that represents a
character.

group of eight adjacent binary digits that
represent one extended binary-coded
decimal interchange code (EBCDIC)
character.

central processor (CP)
The part of the computer that contains the
sequencing and processing facilities for
instruction execution, initial program
load, and other machine operations.

central processor complex (CPC)
The boundaries of a system, exclusive of
I/O control units and devices, that can be
controlled by a single operating system. A
CPC consists of main storage, one or
more central processor units, time-of-day

clocks, and channels, which are or can be
placed in a single configuration. A CPC
also includes channel subsystems, service
processors, and expanded storage where
installed.

change
An alteration (addition, deletion, or
modification) of one or more information
system components, of one of the
following types: hardware (may include
internal code), or software (system or
application). The term change also refers
to an SNA/File Services data object
containing internal code, internal code
customizing data, software, software
customizing data, applications data,
procedures, or documentation.

channel
A path along which signals can be sent,
for example, input/output channel.

The system element that controls one
channel path, whose mode of operation
depends on the type of hardware to
which it is attached.

command
A character string from a source external
to a system that represents a request for
system action.

A request from a terminal for
performance of an operation or execution
of a program.

A value sent on an I/O interface from a
channel to a control unit that specifies the
operation to be performed.

command retry
A channel and control unit procedure that
causes a command to be retried without
requiring an I/O interrupt.

component
Hardware or software that is part of a
functional unit.

A functional part of an operating system;
for example, the scheduler or supervisor.

configuration
The arrangement of a computer system or
network as defined by the nature,
number, and the chief characteristics of its
functional units. More specifically, the
term configuration may refer to a
hardware configuration or a software
configuration. (I) (A)

242 Application Programming Interfaces

configure
To describe to the system the devices and
optional features installed on the system.

console
A logical device used for communication
between the user and the system. (A)

coupling facility
A special logical partition that provides
high-speed caching, list processing, and
locking functions in a sysplex.

coupling facility channel
A high bandwidth fiber optic channel that
provides the high-speed connectivity
required for data sharing between a
coupling facility and the central processor
complexes directly attached to it.

CPC Image
The set of CPC resources that support a
single control program.

default
Pertaining to an attribute, value, or option
that is assumed when none is explicitly
specified. (I)

degraded
Pertaining to a mode of operation in
which the system operates with some
resources not available.

element
A major part of a component (for
example, the buffer control element) or a
major part of a system (for example, the
system control element).

enter An action that submits information to the
computer for processing.

error The smallest detectable anomaly or
exception that can occur in an information
system. Errors may be caused by
hardware, software, internal code, media,
or external causes, for example, people or
environmental abnormalities.

error message
An indication that an error has been
detected.

ESA Enterprise Systems Architecture.

ESA/390
Enterprise Systems Architecture/390.

event An occurrence or happening.

An occurrence of significance to a task;
for example, the completion of an
asynchronous operation, such as an
input/output operation.

exchange
To remove an item and put another in its
place; for example, to remove a
field-replaceable unit (FRU) and install
another of the same type.

facility
An operational capability, or the means
for providing such a capability. (T)

A service provided by an operating
system for a particular purpose; for
example, the checkpoint/restart facility.

failure
An uncorrected hardware error. Contrast
with error and fault.

Note: Failures are either recoverable or
not recoverable by the software or the
operator. The operator is always notified
when failures occur. Usually, system
recovery occurs through a hardware
reconfiguration. If this is not possible,
recovery requires a repair of the failed
hardware.

fault An accidental condition that causes a
functional unit to fail to perform its
required function. (I) (A) Contrast with
error and failure.

feature
A particular part of an IBM product that
can be ordered separately.

function key
In computer graphics, a button or switch
that may be operated to send a signal to
the computer program controlling the
display. (T)

A key that, when pressed, performs a
specified set of operations.

guest In interpretive execution mode, the
interpreted or virtual machine as opposed
to the real machine (the host).

Glossary 243

hard disk
A rigid disk used in a hard disk drive.

hardware
The equipment, as opposed to the
programs, of a computer system.

Hardware Management Console
A console used to monitor and control
hardware such as the System/390® and
zSeries 900 processors.

Hardware Management Console Application
(HWMCA)

A user customized, object-oriented
graphical user interface that provides a
single point of control for the system’s
hardware elements. The HWMCA
provides aggregated and individual
real-time system status via colors,
consolidated hardware messages support,
consolidated operating system messages
support, consolidated service support,
and hardware commands targeted at a
single system, multiple systems, or a
group of systems.

hexadecimal
Pertaining to a selection, choice, or
condition that has 16 possible values or
states. (I)

Pertaining to a fixed-radix numeration
system, with radix of 16. (I)

Pertaining to a numbering system with
base of 16; valid numbers use the digits
0–9 and characters A–F, where A
represents 10 and F represents 15.

host The primary or controlling computer in a
multiple computer installation.

host system
The primary or controlling computer in a
network.

IBM program support representative
An IBM service representative who
preforms maintenance services for IBM
Licensed Internal Code.

icon A pictorial representation of an object or a
selection choice. Icons can represent
objects that users want to work on or
actions that users want to perform. A
unique icon also represents the
application when it is minimized.

identifier (ID)
One or more characters used to identify
or name a data element and possibly to
indicate certain properties of that data
element. (T)

A sequence of bits or characters that
identifies a program, device, or system to
another program, device, or system.

initial machine load (IML)
A procedure that prepares a device for
use.

initial program load (IPL)
The initialization procedure that causes an
operating system to commence operation.

The process by which a configuration
image is loaded into storage at the
beginning of a work day or after a system
malfunction.

The process of loading system programs
and preparing a system to run jobs.

initialization
The operations required for setting a
device to a starting state, before the use of
a data medium, or before implementation
of a process. (T)

Preparation of a system, device, or
program for operation.

To set counters, switches, addresses,
latches, or storage contents to zero or to
other starting values at the beginning of,
or at the prescribed points in, a computer
program or process.

initialize
To prepare for use.

input Data to be processed.

input/output (I/O)
Pertaining to a device whose parts can
perform an input process and an output
process at the same time. (I)

Pertaining to a functional unit or channel
involved in an input process, output
process, or both, concurrently or not, and
to the data involved in such a process.

Pertaining to input, output, or both.

input/output configuration data set (IOCDS)
The data set that contains an I/O
configuration definition built by the I/O
configuration program (IOCP).

244 Application Programming Interfaces

interface
A shared boundary between two
functional units, defined by functional
characteristics, signal characteristics, or
other characteristics as appropriate. The
concept includes the specification of the
connection of two devices having
different functions. (T)

Hardware, software, or both, that links
systems, programs, or devices.

logical partition
A subset of the processor hardware that is
defined to support the operation of a
system control program (SCP). See also
logically partitioned (LPAR) mode.

logically partitioned (LPAR) mode
A central processor complex (CPC)
power-on reset mode that enables use of
the PR/SM feature and allows an
operator to allocate CPC hardware
resources (including central processors,
central storage, expanded storage, and
channel paths) among logical partitions.

loop A sequence of instructions that is to be
executed iteratively (T)

A closed unidirectional signal path
connecting input/output devices to a
system.

message
Information sent to a user from a
program or another user.

mode A method of operation.

MVS Multiple Virtual Storage.

MVS system
An MVS image together with its
associated hardware, which collectively
are often referred to simply as a system,
or MVS system.

network
An arrangement of nodes and connecting
branches. (T)

A configuration of data processing
devices and software connected for
information exchange.

node In a network, the point at which one or
more functional units connect channels or
data circuits. (I)

In a network topology, the point at the
end of a branch. (T)

In SNA, an endpoint of a link, or a
junction common to two or more links in
a network.

operand
Information entered with a command
name to define the data on which a
command processor operates and to
control the execution of the command
processor.

operate
To do a defined action, such as adding or
comparing, performed on one or more
data items.

operating system
Software that controls the execution of
programs and that may provide services
such as resource allocation, scheduling,
input/output control, and data
management. Although operating systems
are predominantly software, partial
hardware implementations are possible.
(T)

operations command facility (OCF)
A facility of the central processor complex
that accepts and processes operations
management commands.

output
Data that has been processed.

panel A display of a list of available functions
for selection by the operator.

parameter
A variable that is given a constant value
for a specified application and that may
denote the application. (I) (A)

An item in a menu for which the user
specifies a value or for which the system
provides a value when the menu is
interpreted.

Data passed between programs or
procedures.

partition
See logical partition.

Glossary 245

password
A value used in authentication or a value
used to establish membership in a set of
people having specific privileges.

A unique string of characters known to
the computer system, and to a user who
must specify it to gain full or limited
access to a system and to the information
stored within it.

pointer
The symbol displayed on the screen that
is moved by a pointing device, such as a
mouse. It is used to point at the objects
and actions users want to select.

power-on reset (POR)
A function that reinitializes all the
hardware in the system and loads the
internal code that enables the machine to
load and run an operating system. This
function is intended as a recovery
function.

problem
An error condition resulting in a loss of
availability of a system resource to an end
user.

processing weight
A relative value, ranging from 1 to 999,
assigned to a partition of a system
running in logically partitioned mode. It
is used to calculate the share of
processing resource to be allocated to that
partition.

processor
In a computer, a functional unit that
interprets and executes instructions. A
processor consists of at least an
instruction control unit and an arithmetic
and logic unit. (T)

The functional unit that interprets and
executes instructions.

The boundaries of a system, exclusive of
I/O control units and devices, that can be
controlled by a single operating system. A
processor consists of main storage, one or
more central processors, time-of-day
clocks, and channels, which are, or can be,
placed in a single configuration. A
processor also includes channel
subsystems, and expanded storage where
installed.

profile
A description of the characteristics of an
entity to which access is controlled.

Data that describes the significant
characteristics of a user, a group of users,
or one or more computer resources.

program
Sequence of instructions for a computer.
A program interacts and relies on either
the hardware or other programs.

program status word (PSW)
An area in storage used to indicate the
sequence in which instructions are
executed, and to hold and indicate the
status of the computer system.

protocol
A set of semantic and syntactic rules that
determines the behavior of functional
units in achieving communication. (I)

In SNA, the meanings of and the
sequencing rules for requests and
responses used for managing the network,
transferring data, and synchronizing the
states of network components.

A specification for the format and relative
timing of information exchanged between
communicating parties.

push button
A rounded-corner rectangle with text
inside. Actions occur immediately when
the push button is selected.

quiesce
To bring a system or a device to a halt by
rejecting new requests for work.

In a VTAM® application program, for one
node to stop another node from sending
synchronous-flow messages.

register
A part of internal storage having a
specified storage capacity and usually
intended for a specific purpose. (T)

remote
Physically distant. Pertains to a computer
or device that is connected to another
computer or device over a communication
line. Contrast with local.

246 Application Programming Interfaces

return code
A code used to influence the execution of
succeeding instructions. (A)

A value returned to a program to indicate
the results of an operation requested by
that program.

S/370 System/370 mode.

screen The physical surface of a workstation on
which information is shown to users.

single point of control
The characteristic a sysplex displays when
you can accomplish a given set of tasks
from a single workstation, even if you
need multiple IBM and vendor products
to accomplish that particular set of tasks.

single system image
The characteristic a product displays
when multiple images of the product can
be viewed and managed as one image.

storage
A functional unit into which data can be
placed, in which they can be retained, and
from which they can be retrieved. (T)

The action of placing data into a storage
device. (I) (A)

support element
An internal control element of a processor
that assists in many of the processor
operational functions.

A hardware unit that provides
communications, monitoring, and
diagnostic functions to a central processor
complex (CPC).

synchronous
Pertaining to two or more processes that
depend o the occurrence of specific
events, such as common timing signals.
(T)

Occurring with a regular or predictable
time relationship. Contrast with
asynchronous.

system
Comprises the processor complex and all
attached and configured I/O and
communication devices.

system resource
Hardware, such as a central processor,
I/O devices, channel paths, software

programs, or other components that
contribute to system operation.

systems network architecture (SNA)
SNA specifies how products connect and
communicate with one another in a
network. SNA is a design for a total data
communication system, encompassing
every part of the communication network
from the user’s application program at
the central site to the terminal at a remote
location possibly hundreds of miles away.
SNA itself is not a system, but an
architecture—a specified set of formats
and protocols to guide the design of
machines and programs. The purpose of
SNA is to define uniform formats and
protocols for data communication
networks, which have traditionally been
characterized by programs, devices, and
communication techniques that often were
not compatible.

title bar
The area at the top of each window that
contains the window title and system
menu icon. When appropriate, it also
contains the minimize, maximize, and
restore icons.

token-ring network
A ring network that allows unidirectional
data transmission between data stations,
by a token passing procedure, such that
the transmitted data return to the
transmitting station. (T)

Note: The IBM Token-Ring Network is a
baseband LAN with a star-wired ring
topology that passes tokens from network
adapter to network adapter.

trap An unprogrammed conditional jump to a
specified address that is automatically
activated by hardware. A recording is
made of the location from which the jump
occurred. (I)

A forced Licensed Internal Code branch,
usually to an error routine.

user interface
Hardware, software, or both that allows a
user to interact with and perform
operations on a system, program, or
device.

Glossary 247

variable
In programming languages, a language
object that may take different values, one
at a time. The values of a variable are
usually restricted to a certain data type.
(I)

A quantity that can assume any of a given
set of values. (A)

A name used to represent a data item
whose value can be changed while the
program is running.

window
An area of the screen with visible
boundaries through which information is
displayed. A window can be smaller than
or equal in size to the screen. Windows
can overlap on the screen and give the
appearance of one window being on top
of another

A choice in the action bar of some
applications. Users select it to arrange the
display of several windows or to change
the active window.

A choice in the action bar of
multiple-document interface applications.

A choice in an action bar that allows the
user to arrange the display of all open
windows and to change the active
window.

A choice in the action bar of
multiple-document interface applications
that allows a user to arrange the display
of all open windows and to change the
active window.

work area
An area reserved for temporary storage of
data to be operated on.

workstation
A functional unit at which a user works.
A workstation often has some processing
capability. (T)

A terminal or microcomputer, usually one
that is connected to a mainframe or
network, at which a user can perform
applications.

248 Application Programming Interfaces

����

Printed in USA

SB10-7030-16

	Contents
	Safety
	Safety notices
	World trade safety information

	Laser safety information
	Laser compliance

	About this publication
	Message event notification
	Load command support
	Hardware message refresh command support
	Hardware message event data
	Activation profile support
	Hardware message delete command support
	Reset clear command support
	Security log event support
	Processing weight support
	Activate CBU command support
	Import/Export profiles support
	External interrupt command support
	Reserve command support
	Alert event support
	Object name added to event data
	Degrade indicator enhancements
	Partition identifier
	SCSI load/dump support
	Event qualification
	Shutdown/Restart command support
	On/Off Capacity on Demand (On/Off CoD) support
	Integrated Facility for Applications and Integrated Information Processors weight support
	Processor running time support
	Group profile support
	Additional image activation profile attributes
	HwmcaGetBulk API
	SNMP over TCP support
	Version support
	Engineering Change (EC)/Microcode Level (MCL) support
	Internet Protocol (IP) addresses support
	z/VM IML/partition activation mode
	Disabled wait event support
	No command response event support
	Temporary capacity support
	IPv6 support
	Additional data added to HWMCA_EVENT_DATA event
	Integrated Facility for Applications (IFA) are Application Assist Processor (AAP) in newer consoles
	Additional image activation profile attributes
	IPL Token attribute for CPC Image object
	Server Time Protocol (STP) configuration support
	Additional temporary capacity support
	Additional image activation profile attributes
	Group Profile capacity support
	Alternate subchannel IPL
	Absolute capping
	Revisions
	Accessibility
	How to send your comments

	Chapter 1. APIs objectives
	Chapter 2. Overview
	Chapter 3. Console application APIs
	Management APIs
	Data exchange APIs
	Commands API

	Command arguments
	Data exchange APIs and commands API structures and definitions
	Constant definitions
	Data exchange APIs SNMP target structure (HWMCA_SNMP_TARGET_T)
	Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)
	Data exchange APIs datatype structure (HWMCA_DATATYPE_T)
	Function prototypes

	Data exchange APIs and commands API example

	Chapter 4. Console application managed objects
	Console application object identifier conventions
	prefix
	attribute
	group
	object

	Console application object
	Console application name bindings
	Console attributes
	Console application commands
	Console application notifications

	Group
	Group name bindings
	Group attributes
	Group commands
	Group notifications

	Defined CPC
	Defined CPC name bindings
	Defined CPC attributes
	Defined CPC relationships
	Defined CPC commands
	Defined CPC notifications

	CPC image
	CPC image name bindings
	CPC image attributes
	Absolute capping type
	Absolute capping value
	Application Assist Processor absolute capping type
	Application Assist Processor absolute capping value
	Integrated Facility for Linux absolute capping type
	Integrated Facility for Linux absolute capping value
	Integrated Information Processor absolute capping type
	Integrated Information Processor absolute capping value

	CPC image relationships
	CPC image commands
	CPC image notifications

	Coupling facility
	Coupling facility name bindings
	Coupling facility attributes
	Internal Coupling Facility absolute capping type
	Internal Coupling Facility absolute capping value

	Coupling facility relationships
	Coupling facility commands
	Coupling facility notifications

	Reset activation profile object
	Reset activation profile name bindings
	Reset activation profile attributes

	Image activation profile object
	Image activation profile name bindings
	Image activation profile attributes
	Absolute capping type
	Absolute capping value
	Application Assist Processor absolute capping type
	Application Assist Processor absolute capping value
	Integrated Facility for Linux absolute capping type
	Integrated Facility for Linux absolute capping value
	Internal Coupling Facility absolute capping type
	Internal Coupling Facility absolute capping value
	Integrated Information Processor absolute capping type
	Integrated Information Processor absolute capping value

	Load activation profile object
	Load activation profile name bindings
	Load activation profile attributes

	Group profile object
	Group profile name bindings
	Group profile attributes

	Capacity record object
	Capacity record name bindings
	Capacity record attributes

	z/VM virtual machine object
	Z/VM virtual machine name bindings
	z/VM virtual machine attributes
	z/VM virtual machine commands
	z/VM virtual machine notifications

	Chapter 5. REXX management functions
	ACTZSNMP
	REXX initialization functions
	Data exchange functions
	Commands API
	Data exchange APIs (REXX sample)

	Chapter 6. Configuring for the data exchange APIs
	Configuring for SNMP (for consoles earlier than version 2.9.0)
	Configuring the console for API (for consoles earlier than version 2.9.0)
	Configuration problems

	Configuring the console for API (for consoles version 2.9.0 or later)

	Appendix A. Building an application
	Hardware Management Console (prior to version 2.9.0)

	Appendix B. HWMCA_EVENT_COMMAND_RESPONSE return codes
	Appendix C. API return codes
	Data exchange API call return codes
	Command API call return codes
	HWMCA_EVENT_COMMAND_RESPONSE return codes
	Data exchange and command API (REXX version) return codes

	Appendix D. APIs for Java (com.ibm.hwmca.api)
	Appendix E. Object Attribute Availability
	Appendix F. XML descriptions
	Add capacity command
	Remove capacity command
	Capacity record query
	Engineering Change (EC)/Microcode Level (MCL) query
	STP configuration information
	XML schema

	Appendix G. Notices
	Trademarks
	Electronic emission notices

	Glossary

