

System z
Application Programming Interfaces

SB10-7030-16

Note:
Before using this information and the product it supports, read the information in
[page v ||Appendix G, “Notices,” on page 235)and IBM Systems Environmental Notices and User
Guide, Z125-5823.

This edition, SB10-7030-16, applies to the IBM System z servers. This edition replaces SB10-7030-15.

There might be a newer version of this document in a PDF file available on Resource Link. Go to
http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. A newer version is indicated by a
lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 0la, 01b).

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Safety
Safety notices . .
World trade safety mformatron .
Laser safety information
Laser compliance .

About this publication .

Message event notification

Load command support . .

Hardware message refresh command support
Hardware message event data .

Activation profile support . .
Hardware message delete command support .
Reset clear command support .

Security log event support .

Processing weight support

Activate CBU command support
Import/Export profiles support .

External interrupt command support .
Reserve command support

Alert event support . .

Object name added to event data .

Degrade indicator enhancements

Partition identifier .

SCSI load /dump support .

Event qualification . .
Shutdown/Restart command support

On/Off Capacity on Demand (On/Off CoD) support

Integrated Facility for Applications and Integrated
Information Processors weight support

Processor running time support .

Group profile support . . .
Additional image activation profile attrrbutes .
HwmcaGetBulk API

SNMP over TCP support .

Version support . .

Engineering Change (EC)/ Mrcrocode Level (MCL)
support . .
Internet Protocol (IP) addresses support

z/VM IML/partition activation mode

Disabled wait event support.

No command response event support

Temporary capacity support.

IPv6 support.

Additional data added to HWMCA EVENT DATA

event . . .
Integrated Fac111ty for Apphcatlons (IFA) are
Application Assist Processor (AAP) in newer
consoles . .

Additional image actlvatlon proflle attrlbutes

IPL Token attribute for CPC Image object .

Server Time Protocol (STP) configuration support
Additional temporary capacity support .
Additional image activation profile attributes.
Group Profile capacity support

© Copyright IBM Corp. 2000, 2013

.xi
. Xi
. xi

< < < <<

. vii

. Vil
. Viil
. viii
. viii
. viii
. Viil
. viii
. viii

X

. Xii

. Xii
. Xii
. Xxii
. Xxii
. Xii
. Xii

. Xiii

. xiil

. xiil
. xiil
. xiil

xiii

. Xiv
. Xiv
. Xiv

Alternate subchannel IPL
Absolute capping .

Revisions .

Accessibility . .
How to send your comments .

Chapter 1. APIs objectives.
Chapter 2. Overview

Chapter 3. Console appllcatlon APls
Management APIs

Data exchange APIs .

Commands APT .
Command arguments .

Data exchange APIs and commands API structures
.42
. 43

and definitions . .
Constant definitions
Data exchange APIs SNMP target structure
(HWMCA_SNMP_TARGET_T) .
Data exchange APIs initialize structure
(HWMCA_INITIALIZE_T)
Data exchange APIs datatype structure
(HWMCA_DATATYPE_T)
Function prototypes .

Data exchange APIs and commands API example

Chapter 4. Console application
managed objects e e
Console application object identifier conventions .
prefix
attribute
group
object .
Console application ob]ect
Console application name blndmgs
Console attributes . .
Console application commands
Console application notifications
Group .
Group name bmdlngs
Group attributes.
Group commands
Group notifications .
Defined CPC .
Defined CPC name bmdmgs
Defined CPC attributes
Defined CPC relationships
Defined CPC commands .
Defined CPC notifications
CPC image .
CPC image name blndlngs
CPC image attributes .
CPC image relationships

. Xiv
. Xiv
. Xiv
. Xiv
. Xiv

a

= Q1 U

. 57
. 58

. 59
. 59
. 62

. 75
.75
.75
.76
.76
. 76
.77
.77
.77
.78
. 78
.79
.79
.79
. 80
.81
.81
. 81
. 81
.90
.90
.91
.92
.92
.. 92
. 106

iii

CPC image commands
CPC image notifications .

Coupling facility . .
Coupling facility name b1nd1ngs .
Coupling facility attributes .

Coupling facility relationships .
Coupling facility commands
Coupling facility notifications .

Reset activation profile object . .
Reset activation profile name bindings .
Reset activation profile attributes .

Image activation profile object. .
Image activation profile name bindings.
Image activation profile attributes

Load activation profile object . .o
Load activation profile name bindings .
Load activation profile attributes .

Group profile object . .

Group profile name bindings .
Group profile attributes .

Capacity record object
Capacity record name bindings
Capacity record attributes .

z/VM virtual machine object . .
Z/VM virtual machine name bindings .
z/VM virtual machine attributes .
z/VM virtual machine commands
z/VM virtual machine notifications .

Chapter 5. REXX management

functions .

ACTZSNMP. . .
REXX initialization funct1ons .
Data exchange functions.
Commands API .

Data exchange APIs (REXX sample)

Chapter 6. Configuring for the data
exchange APls. .
Configuring for SNMP (for Consoles earher than
version 2.9.0)

Configuring the console for API (for consoles
earlier than version 2.9.0)

iv Application Programming Interfaces

. 106
. 107
. 108
. 108
. 108
. 115
. 115
. 115
. 116
. 116
. 117
. 118
. 118
. 118
. 135
. 135
. 136
. 137
. 137
. 137
. 138
. 138
. 138
. 140
. 140
. 140
. 141
. 142

. 143
. 143
. 143
. 143
. 156
. 167

. 191
. 191

. 192

Configuration problems 193
Configuring the console for API (for consoles
version 29.0 or later).193

Appendix A. Building an application 195
Hardware Management Console (prior to version
290019

Appendix B.
HWMCA_EVENT_COMMAND_RESPONSE
returncodes. 199

Appendix C. APl return codes 203

Data exchange API call return codes. 203
Command API call return codes 206
HWMCA_EVENT_COMMAND_RESPONSE return
codes 208
Data exchange and command APl (REXX Vers1on)
return codes.212

Appendix D. APIs for Java
(com.ibm.hwmeca.api) 213

Appendix E. Object Attribute
Availability215

Appendix F. XML descriptions 219

Add capacity command219
Remove capacity command.219
Capacity record query . . . 220
Engineering Change (EC)/ M1crocode Level (MCL)

query . . L. L0222
STP conﬁguratlon 1nformat1on L.223
XML schema223

Appendix G. Notices 235
Trademarks236
Electronic emission notices 236

Glossary24

Safety

Safety notices

Safety notices may be printed throughout this guide. DANGER notices warn you of conditions or
procedures that can result in death or severe personal injury. CAUTION notices warn you of conditions
or procedures that can cause personal injury that is neither lethal nor extremely hazardous. Attention
notices warn you of conditions or procedures that can cause damage to machines, equipment, or
programs.

There are no DANGER notices in this guide.

World trade safety information

Several countries require the safety information contained in product publications to be presented in their
translation. If this requirement applies to your country, a safety information booklet is included in the
publications package shipped with the product. The booklet contains the translated safety information
with references to the US English source. Before using a US English publication to install, operate, or
service this IBM® product, you must first become familiar with the related safety information in the
Systems Safety Notices, G229-9054. You should also refer to the booklet any time you do not clearly
understand any safety information in the US English publications.

Laser safety information

All System z® models can use I/O cards such as FICON®, Open Systems Adapter (OSA), InterSystem
Channel-3 (ISC-3), or other I/O features which are fiber optic based and utilize lasers (short wavelength
or long wavelength lasers).

Laser compliance

All lasers are certified in the US to conform to the requirements of DHHS 21 CFR Subchapter | for Class
1 or Class 1M laser products. Outside the US, they are certified to be in compliance with IEC 60825 as a
Class 1 or Class 1M laser product. Consult the label on each part for laser certification numbers and
approval information.

CAUTION: Data processing environments can contain equipment transmitting on system links with
laser modules that operate at greater than Class 1 power levels. For this reason, never look into the

end of an optical fiber cable or open receptacle. (C027)

CAUTION: This product contains a Class 1M laser. Do not view directly with optical instruments.
(C028)

© Copyright IBM Corp. 2000, 2013 \%

vi Application Programming Interfaces

About this publication

This document is intended to assist system management independent software vendors, customers, and
system programmers in developing system management applications that provide integrated hardware

and software system management solutions using the Console programming interfaces. A knowledge of
the console and the C and/or Rexx language is recommended.

Note: Throughout this book, the term “Console” refers to the Hardware Management Console or the
Support Element.

The Console is a direct-manipulation object-oriented graphical user interface that provides single point of
control and single-system image for hardware elements. The Console provides the customer grouping
support, aggregated and individual real-time system status by colors, consolidated hardware messages
support, consolidated operating system messages support, consolidated service support, and hardware
commands targeted at a single system, multiple systems, or a customer group of systems. Also, the
Console is exception based through customizable acceptable statuses per object. The objects the Console
currently manages are:

* Central Processing Complexes (CPCs)

+ Central Processing Complex Processor Resource/Systems Manager (PR/SM") partitions and/or
native mode images (CPC Images)

¢ Central Processing Complex Coupling Facilities (Coupling Facility CPC Images)

* Customer defined groups of Central Processing Complexes, PR/SM partitions, native mode images,
and/or Coupling Facilities.

In addition to providing an end user with the ability to view and manipulate managed objects, the
Console also provides management application programming interfaces (APIs). The management APIs
provide the ability to get/set the attributes of a Console managed object, issue commands to be
performed on a managed object from a local or remote application, receive asynchronous notifications,
and generate Simple Network Management Protocol enterprise-specific traps.

In the following pages, the Console programming interfaces are detailed. The four areas to be covered
are:

* Console APIs objectives
e Overview of the Console APIs architecture
* Console APIs definition, data structures, and usage

* Console managed object definitions and identifications.

Figures included in this document illustrate concepts and are not necessarily accurate in content,
appearance, or specific behavior.

Message event notification

[“HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for:

* Registering for only hardware or operating system message event notifications,

* Registering for only nonrefresh message event notifications

These capabilities are available in Consoles for:
* 9674 Coupling Facility EC D98085 or later, and

© Copyright IBM Corp. 2000, 2013 vii

* 9672 Parallel Enterprise Server EC E12867 or later.

Load command support

[“Commands API” on page 21| describes how to use the Commands API to perform a Load. The
HWMCA_LOAD_COMMAND is available in Hardware Management Consoles with EC level E45976 or
later and available on all standalone Support Elements that support APIs.

Hardware message refresh command support

[“Commands API” on page 21| describes how to use the Commands API to request refresh events for
existing hardware messages to be sent to registered applications. This command is available on all
Consoles version 1.4.0 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

Hardware message event data

[“HwmcaWaitEvent” on page 13| describes the data provided in a hardware
HWMCA_EVENT_MESSAGES event. While this event is available from all levels of Consoles, only
Consoles version 1.4.0 or later include the following data in these types of events. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

* Time stamp of the hardware message,
* List of CPC Images associated with the hardware object generating the hardware message.

Activation profile support

“Reset activation profile object” on page 116|[“Image activation profile object” on page 118|and |[“Load|
activation profile object” on page 135 describe the Reset Activation Profile, Image Activation Profile, and Load
Activation Profile managed objects. The support for these managed objects is available only on Consoles
version 1.4.4 or later. (To locate the version level installed on your console, look at the title bar on the
workplace window.)

Hardware message delete command support

[“Commands API” on page 21| describes how to use the Commands API to request the deletion of existing
hardware messages. This command is available on all Consoles version 1.5.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window:.)

Reset clear command support

[“Commands API” on page 21| describes how to use the Commands API to perform a Reset clear of a CPC
Image object. This command is available on all Consoles version 1.5.0 or later. To locate the version level
installed on your console, look at the title bar on the workplace window.)

Security log event support

[“"HWMCA_EVENT_SECURITY_EVENT” on page 1§ describes the data provided in a
HWMCA_EVENT_SECURITY_EVENT event. This event is issued only from Hardware Management
Consoles at Version 1.8.2 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

viii Application Programming Interfaces

Processing weight support

Support for the processing weight value and processing weight capped attributes was added to the CPC
Image, Coupling Facility and Image Activation Profile objects on all Consoles version 1.5.1 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

Activate CBU command support

[“Commands API” on page 21|describes how to use the Command API to perform a real or test Capacity
Backup Upgrade (CBU) activation. This command is available on all Consoles version 1.6.2 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.) For
additional information about the Activate CBU command, see Capacity on Demand User’s Guide (available
only on the Resource Link® web site).

Import/Export profiles support

[“Commands API” on page 21| describes how to use the Commands API to import or export profiles. This
command is available on all Consoles version 1.6.2 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

External interrupt command support

[“Commands API” on page 21| describes how to use the Commands API to perform an external interrupt
for a CPC Image object. This command is available on all Consoles Version 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Reserve command support

[“Commands API” on page 21|describes how to use the Commands API to reserve exclusive control of a
CPC object. This command is available only on Support Element Consoles at 1.7.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Alert event support

Support for issuing the HWMCA_EVENT_ALERT has been removed. The Support Element Console no
longer issues this event.

Object name added to event data

["HwmcaWaitEvent” on page 13| describes the data provided in the various events generated by the
Console. While these events have been available for quite some time, additional information is now
provided in all events except for the HWMCA_EVENT_NAME_CHANGE event from Consoles version
1.7.3 or later. This new event data consists of the name of the object the event pertains to.

Degrade indicator enhancements

The Degrade Indicator attribute of the Defined CPC object has been enhanced to have some additional
values, which are used to identify additional degraded conditions. These additional values could be
returned for this attribute from Consoles version 1.8.0 or later.

Partition identifier

Support for the partition identifier attributes was added to the CPC Image and Coupling Facility objects
on all Support Element Consoles version 1.8.0 or later. (To locate the version level installed on your
console, look at the title bar on the workplace window.)

About this publication ix

SCSI load/dump support

[“Commands API” on page 21| describes how to use the Commands API to perform a SCSI (Small
Computer System Interface) Load and SCSI Dump for a CPC Image object. This command is available on
all Consoles Version 1.8.0 or later. (To locate the version level installed on your console, look at the title
bar on the workplace window.)

Event qualification

[“HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous
message event notifications. While message event notifications are provided by all levels of Consoles, not
all Consoles provide the capabilities for providing additional qualification information when registering
to receive events. These capabilities are available in Consoles Version 1.8.0 or later. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

Shutdown/Restart command support

[“Commands API” on page 21|describes how to use the Commands API to shutdown/restart the Console.
This command is available only on Consoles at Version 2.9.0 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

On/Off Capacity on Demand (On/Off CoD) support

Consoles at Version 2.9.1 or later provide the ability to activate, undo, or query information about a
On/Off CoD record for a Defined CPC. (To locate the version level installed on your console, look at the
title bar on the workplace window.) [“Commands API” on page 21| describes how to use the Commands
API to perform an Activation or Undo of an On/Off CoD record for a Defined CPC, while
[CPC” on page 81|describes the On/Off CoD related attributes for the Defined CPC object.

Important planning information for On/Off CoD API activation can be found in Capacity on Demand
User’s Guide (available only on the Resource Link web site).

Integrated Facility for Applications and Integrated Information
Processors weight support

Support for the processing weight value and processing weight capped attributes for Integrated Facility
for Applications (IFA) processors was added to the CPC Image and Image Activation Profile objects on all
Consoles version 2.9.0 or later. Support for the processing weight value and processing weight capped
attributes for IBM System z9® Integrated Information Processors (zIIP) was added to the CPC Image and
Image Activation Profile objects on all Consoles version 2.9.1 or later. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

Processor running time support

Support for the processor running attributes was added to the Defined CPC and Reset Activation Profile
objects on all Consoles version 2.9.1 or later. (To locate the version level installed on your console, look at
the title bar on the workplace window.)

Group profile support

Group Profile Object, in [Chapter 4, “Console application managed objects,” on page 75) describes the new
support for the Group Profile managed object. An additional attribute used to determine the list of Group
Profile objects has also been added to the Defined CPC object as well. This support is available only on
Consoles version 2.9.2 or later. (To locate the version level installed on your console, look at the title bar
on the workplace window.)

X Application Programming Interfaces

Additional image activation profile attributes

Support for the following attributes was added to the Image Activation Profile objects on all Consoles
version 2.9.2 or later:

* Load at activation

* Central storage

* Reserved central storage

* Expanded storage

* Reserved expanded storage

* Number of dedicated general-purpose processors

* Number of reserved dedicated general-purpose processors

* Number of dedicated Integrated Facility for Applications (IFA) processors

* Number of reserved dedicated Integrated Facility for Applications (IFA) processors
* Number of dedicated Integrated Facility for Linux (IFL) processors

* Number of reserved dedicated Integrated Facility for Linux (IFL) processors

¢ Number of dedicated Internal Coupling Facility (ICF) processors

* Number of reserved dedicated Internal Coupling Facility (ICF) processors

¢ Number of dedicated Integrated Information Processors (zIIP) processors

* Number of reserved dedicated Integrated Information Processors (zIIP) processors
* Number of shared general-purpose processors

* Number of reserved shared general-purpose processors

* Number of shared Integrated Facility for Applications (IFA) processors

* Number of reserved shared Integrated Facility for Applications (IFA) processors
* Number of shared Integrated Facility for Linux (IFL) processors

* Number of reserved shared Integrated Facility for Linux (IFL) processors

* Number of shared Internal Coupling Facility (ICF) processors

* Number of reserved shared Internal Coupling Facility (ICF) processors

* Number of shared Integrated Information Processors (zIIP) processors

* Number of reserved shared Integrated Information Processors (zIIP) processors

HwmcaGetBulk API

["HwmcaGetBulk” on page 11| describes the new HwmcaGetBulk application programming interface. This
new API allows the application program to use the SNMP GetBulk request, which provides a mechanism
for getting multiple attributes with a single request. While this API is being introduced with version 2.9.2,
most earlier versions of Consoles already support this new request. (To locate the version level installed
on your console, look at the title bar on the workplace window.)

SNMP over TCP support

Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs will automatically
attempt to use the TCP protocol first and then fall back to UDP if it is unavailable. Support for using TCP
for SNMP is also being made available for earlier Console versions as well. Contact your IBM support
representative for details on what microcode levels are needed for this support. (To locate the version
level installed on your console, look at the title bar on the workplace window.)

About this publication xi

Version support

Support for a new version attribute has been added to the Defined CPC and Console Application objects
on all Consoles version 2.10.0 or later. (To locate the version level installed on your console, look at the
title bar on the workplace window.)

Engineering Change (EC)/Microcode Level (MCL) support

Support for a new attribute that describes the Engineering Change and Microcode levels has been added
to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To locate the
version level installed on your console, look at the title bar on the workplace window.)

Internet Protocol (IP) addresses support

Support for a new attribute that describes all of the internal protocol (IP) addresses being used has been
added to the Defined CPC and Console Application objects on all Consoles version 2.10.0 or later. (To
locate the version level installed on your console, look at the title bar on the workplace window.)

z/VM IML/partition activation mode

The IML/Partition Activation mode attribute for CPC Image object supports a new value for when a CPC
Image is activated is this newly supported mode. This support is available only on all Consoles version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Disabled wait event support

['HWMCA_EVENT_DISABLED_WAIT” on page 19| describes the data provided in the newly supported
HWMCA_EVENT_DISABLED_WAIT event. This event is issued only on Consoles at Version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

No command response event support

[“"HwmcaWaitEvent” on page 13| describes the capabilities available for the receipt of asynchronous event
notifications. While command response event notifications are provided by all levels of Consoles, not all
Consoles provide support for the new event mask, HWMCA_EVENT_NO_COMMAND_RESPONSE,
which is used to indicate the registering application does not want to receive
HWMCA_EVENT_COMMAND_RESPONSE events. This new capability is available in Consoles Version
2.10.0 or later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Temporary capacity support

New support in the form of a new object, new attributes, and new events has been added for temporary
capacity support for Defined CPC objects. This support is available only on Consoles version 2.10.0 or
later. (To locate the version level installed on your console, look at the title bar on the workplace
window.)

Capacity Record Object, in [Chapter 4, “Console application managed objects,” on page 75 describes the
new Capacity Record object and the object's associated attributes. Two new commands,
HWMCA_ADD_CAPACITY_COMMAND and HWMCA_REMOVE_CAPACITY_COMMAND are also
provided to allow for the addition and removal of temporary capacity for Defined CPC objects. Lastly,
two new events are defined, HWMCA_EVENT_CAPACITY_CHANGE and

xii Application Programming Interfaces

HWMCA_EVENT_CAPACITY_RECORD_CHANGE, to allow for registered applications to be notified
about temporary capacity changes for Defined CPC objects, as well as changes in Capacity Record
objects.

IPv6 support

Consoles version 2.10.0 or later fully support Internet Protocol Version 6 (IPv6). To take advantage of this
new support, new versions of the build and run-time files are available for platforms that also support
IPve6.

Additional data added to HWMCA_EVENT_DATA event

[“"HWMCA_EVENT_ENDED” on page 17|describes the data provided in this event. Additional
information is now provided in this event on Console version 2.10.0 or later. This new event data consists
of:

e the reason the console was ended,
* the name of the Console application component that caused the Console to end, and
¢ the type of shutdown that caused the Console to end.

Integrated Facility for Applications (IFA) are Application Assist
Processor (AAP) in newer consoles

On Consoles version 2.10.0 or later, Integrated Facility for Applications (IFA) processors are called
Application Assist Processor (AAP) processors.

Additional image activation profile attributes

Support for the following CPU counter and CPU sampling related attributes were added to the Image
Activation Profile objects on all Consoles version 2.10.1 or later:

* Basic CPU counter authorization control

* Problem state CPU counter authorization control

* Crypto activity CPU counter authorization control

* Extended CPU counter authorization control

* Coprocessor group CPU counter authorization control

* Basic CPU sampling authorization control

IPL Token attribute for CPC Image object

Support for the IPL token attribute was added to the CPC Image object on all Consoles version 2.10.1 or
later.

Server Time Protocol (STP) configuration support

Support for a new attribute that describes the STP configuration has been added to the Defined CPC
object on all Consoles version 2.10.1 or later. Also, the following STP commands were added to the
Defined CPC object:

* Swap Current Time Server
* Set STP Configuration

* Change STP-only CTN

* Join STP-only CTN

* Leave STP-only CTN

About this publication xiii

Additional temporary capacity support

Prior to version 2.10.1, only the total number of processors pending activation could be queried via the
Data Exchange APIs. Starting in version 2.10.1, support has been added to be able to query the number of
processors pending activation by type as well.

Additional image activation profile attributes

Support for the following crypto related attributes were added to the Image Activation Profile objects on
all Consoles version 2.10.2 or later:

* Permit DEA key import functions

* Permit AES key import functions

Group Profile capacity support

Support for a new attribute that provides the current capacity value for a group profile has been added
to the Image object on all Consoles version 2.11.0 or later.

Alternate subchannel IPL

Specifying an alternate subchannel IPL address to the Load command is supported on consoles version
2.11.1 or later.

Absolute capping

Absolute capping is supported on consoles version 2.12.1 or later.

Revisions

A technical change to the text is indicated by a vertical line to the left of the change.

Accessibility

This publication is in Adobe Portable Document Format (PDF) and should be compliant with accessibility
standards. If you experience difficulties using this PDF file you can request a web-based format of this
publication. Go to Resource Link at |http://www.ibm.com/servers/resourcelink| and click Feedback from
the navigation bar on the left. In the Comments input area, state your request, the publication title and
number, choose General comment as the category and click Submit. You can also send an email to
reslink@us.ibm.com providing the same information.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. Send
your comments by using Resource Link at Ihttp:/ /www.ibm.com/servers/ resourcelinkl Click Feedback
on the navigation bar on the left. You can also send an email to reslink@us.ibm.com. Be sure to include
the name of the book, the form number of the book, the version of the book, if applicable, and the
specific location of the text you are commenting on (for example, a page number, table number, or a
heading).

xiv Application Programming Interfaces

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Chapter 1. APIs objectives

The purpose of the Console application programming interfaces is to provide an open set of interfaces
and a workstation platform for system management application providers. The interfaces provide the
capability to use object-based industry-standard programming interfaces instead of building home-grown
release specific programs for collecting the hardware information needed to provide an integrated
hardware and software system management solution. illustrates the integration of system
management applications using the Console application open programming interfaces to provide a
single-system image (SSI) and a single point of control (SPOC).

SSI/SPOC
of Customers
Hardware
and ISVs
Software
c Customer
g and/or
@) ISVs
» Open API
SSI/SPOC
of Console Application
Hardware

Figure 1. Console APIs Objectives

© Copyright IBM Corp. 2000, 2013

2 Application Programming Interfaces

Chapter 2. Overview

This chapter contains a high-level diagram that illustrates how the Console application accomplishes the
purpose of the application programming interfaces, shown in [Figure 1 on page 1|

shows a high-level architecture and flow of information for the Console application management
programming interfaces. The Console application APIs are implemented using the Simple Network
Management Protocol (SNMP) agent. The objects managed by the Console application described in
[Chapter 4, “Console application managed objects,” on page 75 are stored in the Simple Network
Management Protocol management information base (MIB). For more information about using the
management application programming interfaces, see [‘Management APIs” on page 5)

- Local or Remote

- Issues Requests

ISV / Customer

Application - Receives Respones or
PP catio Asynchronous Notifications

Console - 32-bit C callable interfaces

- Written to Console APIs

APls - REXX callable interfaces

A A

Get, Next, Set, Commands

Responses Console SNMP Agent
Y SNMPTAP.DST Redistoreq | SNMP Subagent
SNMP Host Name UDP Aegllii:triin Handles Console
Agent pAps i Application Application
(DAEMON) Notfior Requests Interface
and Issues Methods
+ Handler Responses
r 1 Socket
SNMP Traps ocKe
SNMP Requests and Responses
MIB |
Console Console
Objects Main

Queue Application

Figure 2. Console Application Data Exchange and Commands APIs

© Copyright IBM Corp. 2000, 2013 3

4 Application Programming Interfaces

Chapter 3. Console application APIs

Management APIs

Data exchange APIs

The purpose of the Data Exchange APIs is to allow other applications, local or remote, the ability to
exchange data related to the objects that the Console application manages. Specifically, this support
allows other applications to request the Console application to:

* Query (Get/Get-Next) the attributes of objects,
* Change (Set) certain attributes of objects,
* Receive notification of significant events occurring to objects, and

¢ Generate enterprise-specific Simple Network Management Protocol traps for significant events
occurring to objects.

The Data Exchange APIs use the Simple Network Management Protocol (SNMP) as the transport
mechanism. The attributes of objects can be queried/changed through the underlying SNMP Set, Get,
Get-Next requests, while event notification is accomplished through the use of the enterprise-specific
SNMP Trap message.

Prior to version 2.9.2, the Data Exchange APIs exclusively used the User Datagram Protocol (UDP) of
TCP/IP for the sending of SNMP requests and the receiving of SNMP responses. Consoles version 2.9.2
or later now have support for flowing SNMP requests/responses using the Transmission Control Protocol
(TCP) of TCP/IP. Since TCP guarantees reliable delivery, the Data Exchange APIs automatically attempt
to use the TCP protocol first and then fall back to UDP if it is unavailable.

The underlying SNMP protocol is encapsulated in several APIs in order to reduce the complexities for the
application programmer. Specifically, the set of Data Exchange APIs consists of:

Hwmcalnitialize
Used to perform some initialization tasks necessary for the remainder of the Data Exchange APIs
set and the Commands APL

HwmcaGet
Used to perform a query or Get request for a specified object or object attribute.

HwmcaGetNext
Used to perform a query-next or Get-next request for an object or object attributes that occurs
next in the lexical sequence of objects managed by the Console application.

HwmcaGetBulk
Used to minimize the number of requests required to retrieve large amounts of object or object
attribute data in a manner similar to what could be obtained with a series of HwmcaGetNext
calls.

HwmcaSet
Used to perform a change or Set request for a specified object or object attribute.

HwmcaWaitEvent
Used to wait for a specified period (or forever) for an event notification from the Console
application.

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs in the set.

© Copyright IBM Corp. 2000, 2013 5

HwmcaBuildld
A convenience routine that can be used to construct an object identifier for any object supported
by the Console application.

HwmcaBuildAttributeld
A convenience routine that can be used to construct an attribute object identifier for any object
supported by the Console applications, based on the object identifier of the object itself.

Note: It is possible that some of these APIs might encounter problems if the Console that they are
targeting has been configured to use the Lockup/Screen saver mode capability. It is recommended that
Consoles used as targets for these APIs not have this feature of OS/2 enabled.

The following pages describe each of these APIs in greater detail.

Hwmcalnitialize

Use this API to perform any initialization tasks required in order for the remainder of the API set to
function correctly. (Refer to [Function prototypes” on page 59 for the C function prototype for this APIL)
The arguments specified for this API are:

pInitialize
A pointer to an HWMCA_INITIALIZE_T structure. This structure defines all the information that
is required for the Console application to perform the initialization request. The fields of the
HWMCA_INITIALIZE_T structure meaningful are:

pTarget
A pointer to data specifying the target Console application for the initialization request.

This is a pointer to an HWMCA_SNMP_TARGET_T structure. The fields of this
structure are:

pHost A pointer to a null terminated string specifying the host name or internet address
for the target Console application.

szCommunity
A null terminated string specifying the community name that is to be used for
the SNMP request made to the target Console application. (Refer to
[“Configuring for the data exchange APIs,” on page 191|for more information
regarding the community name used in SNMP requests.)

ulSecurityVersion
Used to specify the desired authentication method. Use the value
HWMCA_SECURITY_VERSION2 for community name based SNMPv2c
authentication. Use the value HWMCA_SECURITY_VERSIONS3 for username
and password based SNMPv3 authentication.

szUsername
Username to be used for SNMPv3 authentication.

szPassword
Password to be used for SNMPv3 authentication.

ulEventMask
Used to specify the types of event notifications that the application program would like
to be registered for. Any combination of the HWMCA_EVENT_* constants logically
ORed together can be specified. This event mask is used for all events emitted by
Console applications managed objects, such as:
* HWMCA_EVENT_COMMAND_RESPONSE
* HWMCA_EVENT_MESSAGE
* HWMCA_EVENT_STATUS_CHANGE
* HWMCA_EVENT_NAME_CHANGE
* HWMCA_EVENT_ACTIVATE_PROF_CHANGE

6 Application Programming Interfaces

« HWMCA_EVENT_CREATED

* HWMCA_EVENT_DESTROYED

« HWMCA_EVENT_EXCEPTION_STATE

« HWMCA_EVENT_ENDED

* HWMCA_EVENT_HARDWARE_MESSAGE

* HWMCA_EVENT_OPSYS_MESSAGE

* HWMCA_EVENT_NO_REFRESH_MESSAGE

* HWMCA_EVENT_STARTED

« HWMCA_EVENT HARDWARE_MESSAGE_ DELETE
« HWMCA_EVENT SECURITY_EVENT

* HWMCA_EVENT _CAPACITY_CHANGE

* HWMCA_EVENT_CAPACITY_RECORD_ CHANGE
* HWMCA_EVENT_DISABLED_WAIT

These event notifications are sent to all registered applications, independent of whether
an application originated the request.

In addition to specifying the types of events that the application program wants to be
registered for, this field can also be used to specify some additional options for the Data
Exchange APIs. These additional options are:

« HWMCA_DIRECT_INITIALIZE

By default, the Data Exchange APIs and the Commands API use SNMP when
performing the Hwmcalnitialize. This flag can be specified to instruct the
Hwmcalnitialize call to use a proprietary TCP/IP sockets level protocol to perform the
Hwmcalnitialize, rather than using the SNMP protocol. When this flag is specified it is
possible for the Hwmcalnitialize to be successful when using a community name that
has read only address. When this flag is not used it is required that the community
name used for the Hwmcalnitialize call has read/write access.

Note: Specifying this flag is highly recommended when a firewall exists between the
Console and the API application. This is because the socket used for the
Hwmcalnitialize call is also used to send event to the API application. Since this socket
connection targets a specific port on the Console (port 3161), it is very straight forward
to define a rule in the firewall that allows connections to this port on the Console. If
this flag is not specified, the Console attempts to establish a socket connection to a
socket created when the API application called the Hwmcalnitialize routine. Since the
port number for this socket is not fixed, it is very difficult to define a firewall rule to
allow this connection from the Console back to the API application.

* HWMCA_FORCE_CLIENT_PATH

When using the Data Exchange APIs to target a Console with multiple LAN interfaces
(for example, a token ring and ethernet interface), this flag can be used to instruct the
Console to ensure that all Data Exchange APIs and the Commands API use the
targeted internet address when sending and receiving data.

* HWMCA_SNMP_VERSION_2

By default, the Data Exchange APIs and the Commands API use SNMP version 1. By
specifying this flag, the Data Exchange APIs are instructed to used SNMP version 2 as
the underlying protocol. The major reason a Data Exchange APIs application would

specify this, is so that it can receive more detailed error return codes that are provided
by SNMP version 2.

« HWMCA_TOLERATE_LOST_EVENTS

By default, the HwmcaWaitEvent call terminates the connection to the target console if
the API application is unable to process events as fast or faster than the target console
is able to send them. By specifying this event mask flag, the connection will not be
terminated in this case. Instead, events will not be sent to the API application while it
is unable to receive them.

Chapter 3. Console application APIs 7

» HWMCA_QUALIFIER_SPECIFIED

By default event notifications from all Console application managed objects that match
the event masks specified in this field will be sent to the API application. By specifying
this event mask flag, additional qualification information can be provided to further
limit the event notifications that will be sent to the API application. When this event
mask flag is specified, the calling API application should also provide additional
qualification information in the ulReserved field. Refer to the description of the
ulReserved field for details on how this additional qualification information is specified.

* HWMCA_EVENT_NO_COMMAND_RESPONSE

By default, all HWMCA_EVENT_COMMAND_RESPONSE events are sent to each
registered application. This event mask flag can be used to indicate that the registering
application does not want to receive these events.

Note: Care should be used when trying to use the same HWMCA_INITIALIZE T
structure for HwmcaWaitEvent calls in addition to the rest of the APIs in the set. Events
associated with a HWMCA_INITIALIZE_T structure will be queued until retrieved with
the HwmcaWaitEvent or until another API, such as HwmcaGet, is called. Therefore,
making calls, such as HwmcaGet, will cause any queued events to be discarded and lost.

When both HwmcaWaitEvent and other calls need to be made, an application should
perform two Hwmcalnitialize calls using two distinct HWMCA_INITIALIZE T
structures. The application can then use one of the HWMCA_INITIALIZE_T structures
for only HwmcaWaitEvent calls and the other HWMCA_INITIALIZE_T structure for the
other API calls.

ulReserved
This is a reserved field and must be set to zero for the Data Exchange APIs if the
HWMCA_QUALIFIER_SPECIFIED event mask flag is not specified. If the
HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of
a linked list of additional event qualification information. The fields of the
HWMCA_EVENT_QUALIFIER_T structures in the list are:

ulEventMask
This field should be set to the event mask flag that is being qualified. Only one
event mask flag should be specified in this field. For example,
HWMCA_EVENT_OPSYS_MESSAGE should be specified when qualifying
operating system message event notifications.

ulType
This field is used to indicate the type of event qualification information being
provided. The following event qualification types are currently supported.

HWMCA_QUALIFIER_TYPE_NAME
This value is used to indicate that the event qualification data is the null
terminated name of the managed object, which is specified in the
type.szName field of this structure. An HWMCA_EVENT_QUALIFIER_T
structure that specifies this event qualification type can be used to limit
event notifications for the specified event mask to those associated with a
managed object with the specified name.

pNext A pointer to the next HWMCA_EVENT_QUALIFIER_T structure. A NULL is
used to indicate that there are no more structures in the linked list.

Once the HWMCA _INITIALIZE_T is used on a successful Hwmcalnitialize, this field
should not be altered in any way.

8 Application Programming Interfaces

The remainder of the HWMCA_INITIALIZE_T structure should be left alone and will be filled in
by the Hwmcalnitialize API. It is important that this structure be left intact and accessible, since it
must be passed as a parameter on each of the remaining Data Exchange APIs and Commands
APL

In addition to using the HWMCA_INITIALIZE_T for any subsequent Data Exchange APIs, it can
also be reused on another Hwmicalnitialize call. The only field that can be changed when doing
this is the ulEventMask field. By changing this value, an application can change the events
notifications that it is registered to receive.

Refer to ["Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)” on page 58|for the C
declaration of this structure.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
Huwmecalnitialize to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The Hwmcalnitialize API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the initialization request was successfully delivered
and processed by the Hardware Management Console Application. A value of
HWMCA_DE_NO_ERROR indicates successful completion.

Note: Upon successful completion of the Hwmcalnitialize call, the ulEventMask field of the
HWMCA_INITIALIZE_ T can be checked for the HWMCA_SNMP_USING_TCP flag to determine if the
initialized session is using UDP or TCP for the flow of SNMP data.

HwmcaRegister

Use this API to alter the event mask and/or event qualifiers used on a previous Hwmcalnitialize call.
(Refer to [“Function prototypes” on page 59|for the C function prototype for this APL) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

ulEventMask
Used to specify the new types of event notifications that the application program would like to
be registered for. Any combination of the HWMCA_EVENT_* constants logically ORed together
can be specified.

pQualifiers
If the HWMCA_QUALIFIER_SPECIFIED event mask flag is specified, then this field should
contain a pointer to an HWMCA_EVENT_QUALIFIER_T structure, which is the first of a linked
list of additional event qualification information.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaRegister to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaRegister API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the register request was successfully delivered and
processed by the Hardware Management Console Application. A value of HWMCA_DE_NO_ERROR
indicates successful completion.

Note: The event mask and event qualifiers specified on the HwmcaRegister call will completely replace
those in effect from the previous HwmcaRegister call.

Chapter 3. Console application APIs 9

HwmcaGet
Used to retrieve or Get the data associated with a specific object attribute. (Refer to ["Function prototypes”]
for the C function prototype for this APL.) The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize AP

pszObjectID
A pointer to a null terminated object identifier string for which the data is to be retrieved. Refer
to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console application manages.

pOutput
A pointer to an output buffer for the data of the returned object.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this Get
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to Get all the object data. If the
buffer specified by pOutput is too small, then the retrieved object data should not be used, since it
is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the HwmcaGet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaGet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the retrieve/Get request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Upon successful completion of the HwmcaGet API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:
HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.
HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.
HWMCA_TYPE_NULL
Used to denote that no value is present.
HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.
ulLength

Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.
pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

10 Application Programming Interfaces

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE _T structure represents the length of each individual data
element in the series.

HwmcaGetNext

Used to retrieve or Get the data associated with the object attribute that occurs next in the lexical
sequence of objects, based on a specified object identifier. (Refer to [“Function prototypes” on page 59| for
the C function prototype for this APL)

The arguments specified for this API are identical to those specified for the HwmcaGet API with two
subtle differences.

1. The meaning of the pszObjectID argument is used as the base for the Get-Next operation, as opposed
to having its object data retrieved.

2. Two HWMCA_DATATYPE_T structures and their associated data are returned. The first is the object
identifier string for the object whose data is being returned and the second is for the data itself.

HwmcaGetBulk

Used to retrieve or Get data associated with a series of object attributes with a single request. (Refer to
[“Function prototypes” on page 59| for the C function prototype for this APIL) This call can be viewed as
performing a series of HwmcaGetNext calls with a single request. For additional details about the
underlying SNMP GetBulkRequest used by this function refer to Request for Comments (RFC) 3416.

The arguments specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

pszObjectIDs
A pointer to a linked list of HWMCA_DATATYPE_T structures used to specify the object
identifiers to use for the GetBulk request. Refer to|Chapter 4, “Console application managed|
fobjects,” on page 75| for more information about the object identifiers that the Console application
manages.

nonRepeaters
The number of object identifiers specified in the pszObjectlds argument that are to produce only
one HWMCA_DATATYPE_T structure in the output buffer.

maxRepititions
The maximum number of HWMCA_DATATYPE_T fields to be placed in the output buffer for the
remaining object identifiers specified in the pszObjectIDs argument.

pOutput
A pointer to an output buffer for the data of the returned object.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this GetBulk
request is returned. If the returned value is greater than that specified in the ulLength argument,
then the call should be made again, with a larger buffer in order to get the complete set of object
data. If the buffer specified by pOutput is too small, then the retrieved object data should not be
used, since it is incomplete.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HwmcaGetBulk to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

Chapter 3. Console application APIs 11

The HwmcaGetBulk API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the request was successfully delivered and processed
by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful completion. Upon
successful completion of the HwmcaGetBulk API, the output buffer specified by pOutput is populated
with a series of one or more HWMCA_DATATYPE_T structures along with their associated data. The
fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData
A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext
A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while
the ulLength field of each HWMCA_DATATYPE_T structure represents the length of each individual data
element in the series.

HwmcaSet
Used to change or Set the data associated with a specific object attribute. (Refer to ["Function prototypes”]
for the C function prototype for this APL.) The arguments specified for this API are:

pInitialize

A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.
pszObjectID

A pointer to a null terminated object identifier string for which the data is to be changed or Set.

Refer to [Chapter 4, “Console application managed objects,” on page 75| for more information
about the object identifiers that the Console application manages.

pDataType
A pointer to an HWMCA_DATATYPE_T structure that specifies the data to be used for the Set
request. The fields of the HWMCA_DATATYPE_T structure are:

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible
values are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

Note: The Data Exchange APIs currently only support lengths of 2 bytes or 4
bytes for the HWMCA_TYPE_INTEGER data type when using the HwmcaSet.

12 Application Programming Interfaces

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T
structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.
pNext This should be set to NULL for the HwmcaSet API and is ignored.

Refer to [Chapter 4, “Console application managed objects,” on page 75| for a description of the
data types, data lengths, and valid data values of the data associated with each type of object
managed by the Console application.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the HwmcaSet to
complete. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

The HwmcaSet API returns an unsigned long integer return code value to the calling application. This
return code lets the calling application know if the change/Set request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

HwmcaWaitEvent

Used to wait for event notifications for objects managed by the Console application. The application
specifies the types of events that it wants to receive through the use of the ulEventMask field of the
HWMCA_INITIALIZE T structure that is used on the Hwmcalnitialize APL (Refer to
[prototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL

pOutput
A pointer to an output buffer for the returned event notification data.

ulLength
The size of the output buffer specified by the pOutput argument.

pulBytesNeeded
A pointer to an unsigned long integer where the number of total bytes needed for this event
notification is returned. If the returned value is greater than that specified in the ulLength
argument, then the event notification data should not be used, since it is incomplete.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for an event
notification. This value is specified in milliseconds and the value of HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

The HwmcaWaitEvent API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if any errors occurred while waiting for the event
notification. A value of HWMCA_DE_NO_ERROR indicates successful completion. A value of
HWMCA_DE_TIMEOUT indicates that no event notifications were present in the specified timeout
period.

Upon successful completion of the HwmcaWaitEvent API, the output buffer specified by pOutput is

populated with a series of one or more HWMCA_DATATYPE_T structures along with their associated
data. The fields of the HWMCA_DATATYPE_T structure are:

Chapter 3. Console application APIs 13

ucType
Defines the type of data represented by this HWMCA_DATATYPE_T structure. Possible values
are:

HWMCA_TYPE_INTEGER
Represents a signed number value in host byte order.

HWMCA_TYPE_OCTETSTRING
Represents a null terminated string value.

HWMCA_TYPE_OBJECTID
Represents a null terminated object identifier string.

ulLength
Used to specify the length of the data represented by this HWMCA_DATATYPE_T structure.

pData A pointer to the actual data that this HWMCA_DATATYPE_T structure represents.

pNext A pointer to the next HWMCA_DATATYPE_T structure. A NULL is used to indicate that there
are no more structures in the linked list.

Note: The value stored in the pulBytesNeeded field represents the total amount of data returned, while the
ulLength field of each HWMCA_DATATYPE _T structure represents the length of each individual data
element in the series.

The series of HWMCA_DATATYPE_T structures returned from the HwmcaWaitEvent API are used to

specify:

* An HWMCA_TYPE_OBJECTID that specifies the object identifier of the object that the event
notification pertains to

 An HWMCA_TYPE_INTEGER that specifies the event notification type for this event

* Any additional data for the event notification type, as specified below.

The additional data for each of the event notification types are:

HWMCA_EVENT_COMMAND_RESPONSE: Used to notify the application of completion information
for a command that has been initiated through the use of the Commands APL

The additional data for this event consists of three object identifier/value pairs that describe the
following:

1. An HWMCA_TYPE_OBJECTID that specifies the object identifier of the command for which this
command response event has been generated.

2. An HWMCA_TYPE_INTEGER that specifies the return code value to be used to determine the
success or failure of the command request that is associated with this command response event.

Note: Refer to|Appendix B, “HWMCA_EVENT COMMAND_RESPONSE return codes,” on page 199
for a list of possible values that can be returned.

3. An HWMCA_TYPE_INTEGER that specifies whether this is the last
HWMCA_EVENT_COMMAND_RESPONSE event that will be issued for this command. A value of
HWMCA_TRUE indicates this event as the last, while a value of HWMCA_FALSE indicates that more
HWMCA_EVENT_COMMAND_RESPONSE events will be forthcoming.

4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.
5. An HWMCA_TYPE_OCTETSTRING that specifies the command correlator.

Note: This field will only be present if the command was invoked using the
HwmcaCorrelatedCommand API call.

14 Application Programming Interfaces

HWMCA_EVENT_MESSAGE: Used to notify the application that an object managed by the Console
application or the Console application itself has a new or refreshed message. This event is generated only
for the base objects and not for copies of objects within user-defined groups.

This event is returned to the application when any combination of the following values is used in the
ulEventMask field of the HWMCA_INITIALIZE T structure:

*+ HWMCA_EVENT_MESSAGE

*+ HWMCA_EVENT_HARDWARE_MESSAGE

* HWMCA_EVENT_OPSYS_MESSAGE

If the HWMCA_EVENT_MESSAGE value is specified in the ulEventMask field of the
HWMCA_INITIALIZE_T structure, then the application will be notified of both hardware and operating
system message events.

If only the HWMCA_EVENT_HARDWARE_MESSAGE or HWMCA_EVENT_OPSYS_MESSAGE value
is specified in the ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will
be notified only of hardware or operating system message events, respectively.

In addition, the HWMCA_EVENT_NO_REFRESH_MESSAGE value can be specified with the above
values to control whether the application should be notified of HWMCA_EVENT_MESSAGE events for
refreshed messages. If the HWMCA_EVENT_NO_REFRESH_MESSAGE value is specified in the
ulEventMask field of the HWMCA_INITIALIZE_T structure, then the application will not be notified of
HWMCA_EVENT_MESSAGE events for refreshed messages.

The additional data for this event can take on two different formats. The format being received can be
determined through examining the first object identifier/value pair. The object identifier/value pairs for
each of the two formats follows:

An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

1. The remaining object identifier/value pair for hardware messages is:
a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed hardware message text.

b. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

c. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refreshed
hardware message.

d. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s)
associated with the object that generated the new or refreshed hardware message. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image
name(s).

When receiving this event from a Support Element Console, this value contains the name(s) of the
CPC Images that are running on the CPC that the Support Element Console is controlling.
When receiving this event from a Hardware Management Console, this value:

* Contains no CPC Image names for hardware messages for the Hardware Management Console
itself

¢ Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware
message pertains to.

e. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains
to.

2. The remaining object identifier/value pairs for operating system messages are:

a. An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message
text.

Chapter 3. Console application APIs 15

Note: If the operating system message text contains multiple lines, then each additional line is
delimited from the next line with the character sequence of a carriage return (\r) and a new line
(\n).

b. An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating
system message.

c. An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no date value for this new operating system
message.

d. An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message
or an HWMCA_TYPE_NULL indicating that there is no time value for this new operating system
message.

e. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should
cause the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).

f. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a
priority message or not (HWMCA_TRUE or HWMCA_FALSE).

g. An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held
message or not (HWMCA_TRUE or HWMCA_FALSE).

h. An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with
the new operating system message or an HWMCA_TYPE_NULL indicating that there is no
prompt text for this new operating system message.

i. An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated
this new operating system message or an HWMCA_TYPE_NULL indicating that there is no
operating system name associated with this new operating system message.

j. An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

k. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains
to.

HWMCA_EVENT_STATUS_CHANGE: Used to notify the application that an object managed by the
Console application has changed status. This event is generated only for the base objects and not for
copies of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_INTEGER that specifies the new status value

2. An HWMCA_TYPE_INTEGER that specifies the old status value.

3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_NAME_CHANGE: Used to notify the application that an object managed by the
Console application has had a name change. This event notification can be useful when an application
retains the object identifiers for objects it is interested in, since the name of an object is used to build the
unique portion of the object identifier. This event is generated only for the base objects and not for copies
of objects within user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new object name
2. An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

HWMCA_EVENT_ACTIVATE_PROF_CHANGE: Used to notify the application that an object managed
by the Console application has changed which activation profile is associated with it.

The additional data for this event consists of two object identifier/value pairs that describe the following:
1. An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name

16 Application Programming Interfaces

2. An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_CREATED: Used to notify the application that a new object managed by the Console
application has been defined or instantiated.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_DESTROYED: Used to notify the application that an object managed by the Console
application has been undefined.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_EXCEPTION_STATE: Used to notify the application that an object managed by the
Console application has either entered into or out of an exception state. An object is considered in an
exception state when its status is not considered acceptable as defined by the acceptable status attribute
of the object. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of two object identifier/value pairs that describe the following;:

1. An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

2. An HWMCA_TYPE_INTEGER that specifies the status value for the object.
3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_STARTED: Used to notify the application that the Console application has started
and is now ready to handle Data Exchange APIs and Commands API request.

The additional data for this event consists of an object identifier/value pair for an
HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

HWMCA_EVENT_ENDED: Used to notify the application that the Console application is ending.

The additional data for this event consists of the following object identifier /value pairs:

1. An HWMCA_TYPE_INTEGER that specifies the reason for the event. The possible values are:
« HWMCA_ENDED_USER - the event was initiated by a user,
* HWMCA_ENDED_AUTOMATION - the event was initiated by automation, or

« HWMCA_ENDED_OTHER - the event was initiated by the Console application itself (for example,
recovery action, change management, etc.)

2. An HWMCA_TYPE_OCTETSTRING that specifies the name of the Console application component
that caused the event.

3. An HWMCA_TYPE_INTEGER that specifies the shutdown type for the event. The possible values are:

« HWMCA_SHUTDOWN_CONSOLE - the console has been shut down and will take manual
intervention to be restarted,

* HWMCA_RESTART_APPLICATION - the console application has been stopped and will
automatically be restarted, or

« HWMCA_RESTART_CONSOLE - the console has been stopped and will automatically be restarted.
4. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Chapter 3. Console application APIs 17

HWMCA_EVENT_HARDWARE_MESSAGE_DELETE: Used to notify the application that a hardware
message associated with an object managed by the Console application or the Console application itself,
has been deleted. This event is generated only for the base objects and not for copies of objects within
user-defined groups.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a hardware message
(HWMCA_HARDWARE_MESSAGE).

2. An HWMCA_TYPE_OCTETSTRING that specifies the message text for the hardware message being
deleted.

3. An HWMCA_TYPE_INTEGER that is always set to HWMCA_FALSE for this event.
4. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the hardware message being
deleted.

5. An HWMCA_TYPE_OCTETSTRING that specifies the names of the CPC Image object(s) associated
with the object for which the hardware message is being deleted. This
HWMCA_TYPE_OCTETSTRING is a null terminated, blank delimited list of the CPC Image name(s).

When receiving this event from a Support Element Console, this value contains the name(s) of the

CPC Images that are running on the CPC that the Support Element Console is controlling.

When receiving this event from a Hardware Management Console, this value:

¢ Contains no CPC Image names for hardware messages for the Hardware Management Console
itself

¢ Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware message
pertains to.

6. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Note: The application should ensure that it provides a buffer that is at least large enough to hold the
HWMCA_DATATYPE_T structures and associated data for the event notification object identifier and
type. A constant, HWMCA_MIN_EVENT_BUF_SIZE is provided to the application for this purpose. In
addition, another constant, HWMCA_MAX_EVENT_BUF_SIZE is provided to the application. This
constant can be used to allocate a buffer large enough to hold any event notification. It is important to
note that although the HWMCA_MAX_EVENT_BUF_SIZE constant can be used to allocate a buffer large
enough for any event, it is not intended to indicate a buffer of this size is large enough for all HwmcaGet
requests.

HWMCA_EVENT_SECURITY_EVENT: Used to notify the application that a security event has been
logged.

The additional data for this event consists of the following object identifier/value pairs:
1. An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the security log.
2. An HWMCA_TYPE_OCTETSTRING that specifies the text of the security log.

3. An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case the console itself).

HWMCA_EVENT_CAPACITY_CHANGE: Used to notify the application that the processing capacity
for a Defined CPC object has changed in some manner. The additional data for this event consists of the
following object identifier/value pairs:

1. An HWMCA_TYPE_INTEGER that specifies the type of capacity change that occurred, using one of
the following constants:

* HWMCA_CAPACITY_FENCED_BOOK A processor book has been fenced and is not longer usable.
« HWMCA_CAPACITY_DEFECTIVE_PROCESSOR A processor has become defective.

18 Application Programming Interfaces

« HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE A concurrent processor book replacement
has been performed.

* HWMCA_CAPACITY_CONCURRENT_BOOK_ADD A concurrent processor book addition has
been performed.

* HWMCA_CAPACITY_CHECK_STOP A processor has gone into a check stopped state.

« HWMCA_CAPACITY_CHANGES_ALLOWED A user has configured the APIs to be allowed to
perform capacity changes.

« HWMCA_CAPACITY_CHANGES_NOT_ALLOWED A user has configured the APIs to no longer
be allowed to perform capacity changes.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

HWMCA_EVENT_CAPACITY_RECORD_CHANGE: Used to notify the application that a change has
occurred to a temporary capacity record. The additional data for this event consists of the following
object identifier /value pairs:

1.

An HWMCA_TYPE_INTEGER that specifies the type of capacity record change that occurred, using
one of the following constants:

« HWMCA_CAPACITY_RECORD_ADD The capacity record has been added to the machine.
* HWMCA_CAPACITY_RECORD_DELTA The capacity record has been modified.

« HWMCA_CAPACITY_RECORD_DELETE The capacity record has been deleted.

« HWMCA_CAPACITY_RECORD_ACCOUNTING

* HWMCA_CAPACITY_ACTIVATION_LEVEL The capacity record has changed it's level of
activation (either more resources from this record have been added or removed from the machine).

« HWMCA_CAPACITY_PRIORITY_PENDING Additional capacity has been added for the capacity
record, with priority, but not enough resources were available to allow for all the capacity specified
to be put into effect. As resources become available they will be added for this record in order to
completely satisfy the original request for additional capacity.

« HWMCA_CAPACITY_RECORD_OTHER The capacity record has changed in some other manner.

An HWMCA_TYPE_OCTETSTRING for the temporary capacity record identifier that has changed.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

HWMCA_EVENT_DISABLED_WAIT: Used to notify the application that a CPC Image object has
entered a disabled wait state. The additional data for this event consists of the following object
identifier/value pairs:

1.

An HWMCA_TYPE_OCTETSTRING for the name of the Defined CPC that is associated with the CPC
Image that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING for the disabled wait PSW value.

An HWMCA_TYPE_INTEGER for the partition identifier of the CPC Image that entered a disabled
wait state.

An HWMCA_TYPE_INTEGER for the number of the processor that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING for the serial number of the Defined CPC that is associated with
the CPC Image that entered a disabled wait state.

An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a CPC Image object).

An HWMCA_TYPE_INTEGER that specifies if the disabled wait event was due to an SCP initiated
reset (HWMCA_TRUE) or not (HWMCA_FALSE).

HwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs. An application should always
perform an HwmcaTerminate whenever a successful Hwmcalnitialize has been done after the application

Chapter 3. Console application APIs 19

has completed all the activities that are required using the Data Exchange APIs and Commands APL
(Refer to|“Function prototypes” on page 59for the C function prototype for this APL) The arguments
specified for this API are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaTerminate to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The HwmcaTerminate API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the terminate request was successfully delivered and
processed by the Console application. A value of HWMCA_DE_NO_ERROR indicates successful
completion.

Once the HwmcaTerminate has been successfully called, the HWMCA_INITIALIZE_T structure can then
be used for another purpose or freed, depending on the needs of the application.

HwmcaBuildid

A convenience routine to aid the application program in constructing an object identifier for any object
supported by the Console. (Refer to [“Function prototypes” on page 59| for the C function prototype for
this APL.) The arguments specified for this API are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszPrefix
A pointer to the prefix string to be used for the object identifier to be built. Any of the valid
prefixes defined in the Data Exchange APIs include file can be used, such as:
* HWMCA_CONSOLE_ID
+ HWMCA_CFG_CPC_GROUP_ID
+ HWMCA_CFG_CPC_ID
* HWMCA_CPC_IMAGE_GROUP_ID
*+ HWMCA_CPC_IMAGE_ID
« HWMCA_GROUPS_GROUP_ID
+ HWMCA_GROUPS_OBJECT_ID
+ HWMCA_COMMAND_PREFIX
* HWMCA_ACT_RESET_OBJECT_ID
+ HWMCA_ACT_IMAGE_OBJECT_ID
+ HWMCA_ACT_LOAD_OBJECT_ID
+ HWMCA_ACT_GROUP_OBJECT_ID
+ HWMCA_CAPACITY_RECORD_OBJECT_ID
* HWMCA_CFG_VM_GROUP_ID
*+ HWMCA_VM_OBJECT_ID

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. This can be
specified as NULL, when building an identifier for an object itself, as opposed to an attribute
object identifier. (Any of the HWMCA_*_SUFFIX constants can be specified in this argument.)

pszGroupName
A pointer to the group name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined group or an object contained within a
predefined group.

20 Application Programming Interfaces

pszObjectName
A pointer to the object name to be used for building the object identifier. This can be specified as
NULL, when building an object identifier for a predefined or user-defined group object.

Note: Refer to[“Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

HwmcaBuildAttributeld

A convenience routine to aid the application program in constructing an attribute object identifier for any
object supported by the Console, based on the object identifier of the object itself. (Refer to
[prototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pszBuffer
A pointer to a buffer where the built object identifier string is to be placed. It is recommended
that this buffer be at least HWMCA_MAX_ID_LEN bytes in length.

pszObjectID
A pointer to the object identifier of the object for which the attribute identifier is to be built.

pszAttribute
A pointer to the attribute suffix string to be used for the object identifier to be built. (Any of the
HWMCA_*_SUFFIX constants can be specified in this argument.)

Note: Refer to[“Console application object identifier conventions” on page 75 for more information on
the conventions used for the object identifiers for objects managed by the Console.

Commands API

Allows other applications, local or remote, the ability to execute commands against the objects that the
Console application manages. Specifically, this support will allow other applications to request the
Console applications to perform the following commands:
* Activate

* Reset Normal

* Reset Clear

* Deactivate

¢ Send Operating System command

* Start

* Stop

* PSW Restart

* Load

* Hardware Message Refresh

* Hardware Message Delete

* Activate CBU

¢ Undo CBU

* Import Profile

* Export Profile

* Reserve

* External Interrupt

* SCSI Load

e SCSI Dump

¢ Shutdown/Restart

* Activate On/Off CoD

* Undo On/Off CoD

* Add Temporary Capacity

* Remove Temporary Capacity

e Swap Current Time Server

* Set STP Configuration

Chapter 3. Console application APIs 21

¢ Change STP-only CTN
* Join STP-only CTN
e Leave STP-only CTN

The Commands API uses the Simple Network Management Protocol (SNMP) as the transport mechanism.
The underlying SNMP protocol is encapsulated in the HwmcaCommand API in order to reduce the
complexities for the application programmer. Refer to following pages for additional information about
the HwmcaCommand.

HwmcaCommand

Used to perform a command against a specific object managed by the Console. (Refer to
[orototypes” on page 59| for the C function prototype for this APL) The arguments specified for this API
are:

pInitialize
A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize API.

pszObjectID
A pointer to a null terminated object identifier string for the target object of the command. Refer
to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console manages.

pszCommandID
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed. Valid values for this argument are:
* HWMCA_ACTIVATE_COMMAND
+ HWMCA_DEACTIVATE_COMMAND
* HWMCA_RESETNORMAL_COMMAND
* HWMCA_START_COMMAND
* HWMCA_STOP_COMMAND
* HWMCA_PSWRESTART_COMMAND
* HWMCA_SEND_OPSYS_COMMAND
* HWMCA_LOAD_COMMAND
* HWMCA_HW_MESSAGE_REFRESH_COMMAND
* HWMCA_RESETCLEAR_COMMAND
+ HWMCA_HW_MESSAGE_DELETE_COMMAND
+ HWMCA_ACTIVATE_CBU_COMMAND
* HWMCA_UNDO_CBU_COMMAND
* HWMCA_IMPORT_PROFILE_COMMAND
* HWMCA_EXPORT_PROFILE_COMMAND
* HWMCA_RESERVE_COMMAND
* HWMCA_EXTERNAL_INTERRUPT_COMMAND
* HWMCA_SCSI_LOAD_COMMAND
* HWMCA_SCSI_DUMP_COMMAND
* HWMCA_SHUTDOWN_RESTART_COMMAND
* HWMCA_ACTIVATE_OOCOD_COMMAND
+ HWMCA_UNDO_OOCOD_COMMAND
* HWMCA_ADD_CAPACITY_COMMAND
* HWMCA_REMOVE_CAPACITY_COMMAND
* HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
* HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
* HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
* HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
* HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND

pDatatype
A pointer to a linked list of HWMCA_DATATYPE _T structures used to represent the arguments
to be passed to the specified command.

22 Application Programming Interfaces

The HwmcaCommand API returns an unsigned long integer return code value to the calling application.
This return code lets the calling application know if the command request was successfully delivered for
execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates successful
completion.

Once the application determines that the command request has been successfully delivered to the
Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE event notification(s)
for this command request. This is accomplished through the use of the HwmcaWaitEvent. All applications
are implicitly registered for this event type. The HWMCA_EVENT_COMMAND_RESPONSE event
notification will contain:

* Object identifier of the object for which command request was targeted,

* Object identifier for the command that was requested to be executed,

* Return code value that can be used to determine the success or failure of the command request, and

* An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event
notification that should be expected for this command.

Refer to ["HwmcaWaitEvent” on page 13|for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

The exceptions to this rule are HWMCA_HW_MESSAGE_REFRESH_COMMAND and
HWMCA_HW_MESSAGE_DELETE_COMMAND commands. There is no need to wait for a
HWMCA_EVENT_COMMAND_RESPONSE event notification for these commands. These commands
are finished once the HwmcaCommand has completed.

HwmcaCorrelatedCommand

Used to perform a command against a specific object managed by the Console. (Refer to
[prototypes” on page 59| for the C function prototype for this APL.) While similar to the HwmcaCommand
API, this API call is intended to be used to allow the caller to specify some unique correlator data that
will then be provided back to the caller as part of the HWMCA_EVENT_COMMAND_RESPONSE
event, so that the caller can be sure that the event was a result of the command that it requested to be
executed. The arguments specified for this API are:

plnitialize

A pointer to the HWMCA_INITIALIZE_T structure that was used on the Hwmcalnitialize APL
pszObjectld

A pointer to a null terminated object identifier string for the target object of the command. Refer

to [Chapter 4, “Console application managed objects,” on page 75| for more information about the
object identifiers that the Console manages.

pszCommandId
A pointer to a null terminated object identifier string for the object identifier of the command that
is to be executed.

pDataType
A pointer to a linked list of HWMCA_DATATYPE _T structures used to represent the arguments
to be passed to the specified command.

ulTimeout
Used to specify the amount of time that the calling application wants to wait for the
HuwmcaCorrelatedCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

pCorrelator
A pointer to the data to be used as a correlator for the specified command.

correlatorSize
The length of the correlator data.

Chapter 3. Console application APIs 23

The HwmcaCorrelatedCommand API returns an unsigned long integer return code value to the calling
application. This return code lets the calling application know if the command request was successfully
delivered for execution to the Console application. A value of HWMCA_CMD_NO_ERROR indicates
successful completion. Once the application determines that the command request has been successfully
delivered to the Console, it must wait for one or more HWMCA_EVENT_COMMAND_RESPONSE
event notification(s) for this command request. This is accomplished through the use of the
HwmcaWaitEvent. All applications are implicitly registered for this event type. The
HWMCA_EVENT_COMMAND_RESPONSE event notification will contain:

* Object identifier of the object for which command request was targeted,
* Object identifier for the command that was requested to be executed,
* Return code value that can be used to determine the success or failure of the command request, and

* An indication of whether this event is the last HWMCA_EVENT_COMMAND_RESPONSE event
notification that should be expected for this command.

¢ The command correlator specified when the command was invoked.

Refer to ["HwmcaWaitEvent” on page 13|for more details regarding the data returned from the
HwmcaWaitEvent for the HWMCA_EVENT_COMMAND_RESPONSE event notification.

Command arguments
The acceptable and/or required arguments for each command are as follows.

HWMCA_ACTIVATE_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Activation profile name
Name of the activation profile to be used for the Activate command. The default is to use
the profile name specified in the Activation profile name attribute for the specified object.

Force indicator
An indicator used to request conditional processing of the Activate command depending
on the state of the target object. The default is to unconditionally perform the command
(that is, FORCE=TRUE) no matter what the state of the target object is.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Activation profile name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the activation profile name (including the null terminator).

24 Application Programming Interfaces

pData A pointer to the activation profile name itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_DEACTIVATE_COMMAND
No arguments are required, but optionally a Force indicator can be specified for the Deactivate
command. If this argument is not specified, then the default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is. The fields of
the HWMCA_DATATYPE_T structure used to describe the optional Force indicator are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETNORMAL_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Normal command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Normal command. The default is to not
associate an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

Chapter 3. Console application APIs 25

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_RESETCLEAR_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Force indicator
An indicator used to request conditional processing of the Reset Clear command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE-TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Reset Clear command. The default is to not associate
an IPL token with the command.

Either one or both of these arguments can be specified, but they must be specified in the order
shown by the preceding list. If an argument is not specified, then the default for that argument is
used. In order to specify an argument, such that the default will be used, the
HWMCA_DATATYPE_T structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Force Indicator

26 Application Programming Interfaces

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_START_COMMAND
No arguments are accepted or required.

HWMCA_STOP_COMMAND
No arguments are accepted or required.

HWMCA_PSWRESTART_COMMAND
No arguments are accepted or required.

HWMCA_SEND_OPSYS_COMMAND
This command requires the following two arguments:
* An indication of whether this is a priority operating system command
* The text of the operating system command.

The fields of the HWMCA_DATATYPE_T structures used to describe these two arguments are:
Priority Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for priority operating system
commands or HWMCA_FALSE for nonpriority operating system commands.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the operating system command itself.

Operating System Command Text

ucType
Should be set to HWMCA_TYPE_OCTETSTRING

ulLength
Should be set to the length of the operating system command (including the null
terminator).

Chapter 3. Console application APIs 27

Note: The operating system command itself should have a length of at least one byte, not
including the null terminator.

pData Should be a pointer to the operating system command itself.
pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the Load. The default will be to use
the Load address last used when a Load was performed for the object.

Load parameter
Parameter string to be used when performing the Load. The default will be to use the
Load parameter last used when a Load was performed for the object.

Clear indicator
Whether or not memory should be cleared before performing the Load. The default is to
clear memory before performing the Load.

Timeout
Amount of time (in seconds) to wait for the Load to complete. The default timeout is 60
seconds.

Store status indicator
Whether or not status should be stored before performing the Load. The default is not to
store status before performing the Load.

Force indicator
An indicator used to request conditional processing of the Load command depending on
the state of the target object. The default is to unconditionally perform the command (that
is, FORCE=TRUE) no matter what the state of the target object is.

IPL Token
An IPL token to associate with the Load command. The default is to not associate an IPL
token with the command.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

28 Application Programming Interfaces

ulLength
Should be set to the length of the address string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to 6 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the Load. This string must consist of only hexadecimal characters.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the parameter string to be used when performing the Load
(including the null terminator). This string (including the null terminator) must be less
than or equal to nine characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Clear indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for memory to be cleared
before performing the Load or HWMCA_FALSE to bypass the clearing of memory before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Timeout

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the timeout value that is to be used when performing the
Load. This value must be between 60 seconds and 600 seconds.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Store status indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

Chapter 3. Console application APIs 29

pData A pointer to a field containing the value HWMCA_TRUE for status to be stored before
performing the Load or HWMCA_FALSE to bypass the storing of status before
performing the Load.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

IPL Token

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the IPL token.

pData A pointer to the IPL token itself.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_HW_MESSAGE_REFRESH_COMMAND
No arguments are accepted or required.

HWMCA_HW_MESSAGE_DELETE_COMMAND
This command requires the following argument:
* The time stamp of the hardware message.

The fields of the HWMCA_DATATYPE_T structure used to describe the time stamp value are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the time stamp (including the null terminator).

pData A pointer to the time stamp string itself.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_ACTIVATE_CBU_COMMAND
This command has one required and one optional argument:
* An indicator of whether a real or test CBU activation should be performed is required.
¢ The password used to validate the CBU activation is optional. If not specified, the password
will be obtained automatically from the IBM support system.

The fields of the HWMCA_DATATYPE_T structure used to describe these arguments are:
Reall/Test Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

30 Application Programming Interfaces

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for a real CBU activation or
HWMCA_FALSE for a test CBU activation.

pNext Should be set to NULL, if this is the last argument to being specified, or this should point
to the HWMCA_DATATYPE_T structure used to describe the next argument.

Password

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the password (including the null terminator).

pData A pointer to the password string itself.
pNext Should be set to NULL, if this is the last argument expected for this command.

HWMCA_UNDO_CBU_COMMAND
No arguments are accepted or required.

HWMCA_IMPORT_PROFILE_COMMAND
This command requires the following argument:
* The profile area to be imported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be imported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_EXPORT_PROFILE_COMMAND
This command requires the following argument:
* The profile area to be exported.

The fields of the HWMCA_DATATYPE_T structure used to describe the profile area are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData Should be an integer value greater than or equal to 1 and less than or equal to 4,
indicating the profile area to be exported.

pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_RESERVE_COMMAND
Note: This command is available only on a Support Element console. After successfully issuing
this command to request the reserve, all API command requests and the majority of other API
requests will be blocked, including those from the issuer of the reserve request, until the reserve
is released.

This command requires the following arguments:
* An indicator of whether the reserve is being requested or released.
¢ The name of the application requesting/releasing the reserve (exclusive control).

Chapter 3. Console application APIs 31

The fields of the HWMCA_DATATYPE_T structure used to describe these two arguments are:
Request/Release Indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE when requesting the reserve or
HWMCA_FALSE when releasing the reserve.

pNext Should be set to the address of the HWMCA_DATATYPE_T structure used to describe
the text for the application name.

Application Name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the application name (including the null terminator). The
length of this field including the null terminator must be less than or equal to 9
characters.

pData A pointer to the application itself.
pNext Should be set to NULL, since this is the last argument expected for this command.

HWMCA_EXTERNAL_INTERRUPT_COMMAND
This command requires the following argument:
¢ The number of the processor that is the target of the external interrupt command. This is a
number between zero and the maximum number of processors for the target CPC Image object.

The fields of the HWMCA_DATATYPE_T structure used to describe the application name are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to the processor number.
pNext Should be set to NULL, since this command only accepts one argument.

ulTimeOut
Used to specify the amount of time that the calling application wants to wait for the
HwmcaCommand to complete. This value is specified in milliseconds and the value of
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

HWMCA_SCSI_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Load. The default will be to
use the Load address last used when a SCSI Load was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Load. The default will be to use
the Load parameter last used when a SCSI Load was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Load. The default will be to
use the worldwide port name last used when a SCSI Load was performed for the object.

32 Application Programming Interfaces

Logical unit number
The logical unit number (LUN) to be used for the SCSI Load. The default will be to use
the logical unit number last used when a SCSI Load was performed for the object.

Boot program selector
The boot program selector to be used for the SCSI Load. The default will be to use the
boot program selector last used when a SCSI Load was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Load. The default
will be to use the operating system specific load parameters last used when a SCSI Load
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Load. The default will be to
use the boot record logical block address last used when a SCSI Load was performed for
the object.

Force indicator
An indicator used to request conditional processing of the SCSI Load command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData
A pointer value of zero.

pNext Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

Chapter 3. Console application APIs 33

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Load (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Load (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Load (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Load. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 - 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

34 Application Programming Interfaces

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Load.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Load (including the null terminator). This string (including the
null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Load. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SCSI_DUMP_COMMAND
No arguments are required, but the following arguments can optionally be specified:

Load address
Hexadecimal address to be used when performing the SCSI Dump. The default will be to
use the Load address last used when a SCSI Dump was performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Dump. The default will be to use
the Load parameter last used when a SCSI Dump was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Dump. The default will be to
use the worldwide port name last used when a SCSI Dump was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Dump. The default will be to use
the logical unit number last used when a SCSI Dump was performed for the object.

Chapter 3. Console application APIs 35

Boot program selector
The boot program selector to be used for the SCSI Dump. The default will be to use the
boot program selector last used when a SCSI Dump was performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI Dump. The default
will be to use the operating system specific load parameters last used when a SCSI Dump
was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Dump. The default will be
to use the boot record logical block address last used when a SCSI Dump was performed
for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Dump command
depending on the state of the target object. The default is to unconditionally perform the
command (that is, FORCE=TRUE) no matter what the state of the target object is.

Any number of arguments can be specified; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that argument is used.
In order to specify an argument, such that the default will be used, the HWMCA_DATATYPE_T
structure used to describe the argument should be specified as follows:

ucType
Should be set to HWMCA_TYPE_NULL.

ulLength
Should be set to zero.

pData A pointer value of zero.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

The default for any argument can be overridden by specifying the HWMCA_DATATYPE_T
structure used to describe the argument as follows:

Load address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the address string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 5 characters.

pData Should be a pointer to a field containing the address string to be used when performing
the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Load parameter

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

36 Application Programming Interfaces

ulLength
Should be set to the length of the parameter string to be used when performing the SCSI
Dump (including the null terminator). This string (including the null terminator) must be
less than or equal to 9 characters.

pData Should be a pointer to a field containing the parameter string to be used when
performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Worldwide port name

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the worldwide port name string to be used when
performing the SCSI Dump (including the null terminator). This string (including the null
terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the worldwide port name string to be used
when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Logical unit number

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the logical unit number string to be used when performing
the SCSI Dump (including the null terminator). This string (including the null terminator)
must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the logical unit number string to be used when
performing the SCSI Dump. This string must consist of only hexadecimal characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Disk Partition Identifer

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the boot program selector value, which can be in the range
0 to 30, inclusive.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Operating system specific load parameters

Chapter 3. Console application APIs 37

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the operating system specific parameters string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 257 characters.

pData Should be a pointer to a field containing the operating system specific parameters string
to be used when performing the SCSI Dump.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Boot record logical block address

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the boot record logical block address string to be used
when performing the SCSI Dump (including the null terminator). This string (including
the null terminator) must be less than or equal to 17 characters.

pData Should be a pointer to a field containing the boot record logical block address string to be
used when performing the SCSI Dump. This string must consist of only hexadecimal
characters.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

Force indicator

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be performed
conditionally based on the state of the target object.

pNext
Should be set to NULL if this is the last argument being specified, or this should point to
the HWMCA_DATATYPE_T structure used to describe the next argument.

HWMCA_SHUTDOWN_RESTART_COMMAND
This command requires the following argument:

* An indicator of the type of shutdown or restart to be performed.

The fields of the HWMCA_DATATYPE_T structure used to describe this shutdown/restart type
are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing one of the following values:

38 Application Programming Interfaces

* HWMCA_RESTART_APPLICATION - Used to indicate the Console application is to be
restarted.

Note: For Support Element consoles, this value will implicitly cause the Console to be
restarted.

¢« HWMCA_RESTART CONSOLE - Used to indicate the Console is to be restarted.

« HWMCA_SHUTDOWN_CONSOLE - Used to indicate the Console is to be
shutdown/powered off.

* HWMCA_RESTART_APPLICATION_ALTERNAT E - Used to indicate the Alternate
Support Element Console application is to be restarted. This option is only valid for the
Support Element Console.

* HWMCA_RESTART_CONSOLE_ALTERNATE -Used to indicate the Alternate Support
Element Console is to be restarted. This option is only valid for the Support Element
Console.

Note: This value will implicitly cause the Alternate Console to be restarted.

* HWMCA_SHUTDOWN_CONSOLE_ALTERNATE - Used to indicate the Alternate
Support Element Console is to be shutdown/powered off. This option is only valid for
the Support Element Console.

pNext Should be set to NULL, since this command only accepts one argument.
HWMCA_ACTIVATE_OOCOD_COMMAND
This command requires the following argument:
* The order number of the On/Off Capacity on Demand (On/Off CoD) record to be activated.
The fields of the HWMCA_DATATYPE_T structure used to describe the order number are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the order number string (including the null terminator).

pData A pointer to the string itself.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_UNDO_OOCOD_COMMAND
No arguments are accepted or required.

HWMCA_ADD_CAPACITY_COMMAND
This command, which is used to add temporary capacity to a Defined CPC object, requires the
following argument:

* An XML fragment describing the temporary capacity to be added. This XML is used to
describe:

— the identifier of the capacity record to be used,
— the software model to be used for the capacity addition (optional),
— the delta processor information to be used for the capacity addition (optional),

— an indicator for whether the capacity addition is a priority request, (optional, default false),
and

— an indicator for whether the additional capacity is to be added as test or real.

Note: Refer to [Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

Chapter 3. Console application APIs 39

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_REMOVE_CAPACITY_COMMAND
This command, which is used to remove temporary capacity from a Defined CPC object, requires
the following argument:

* An XML fragment describing the temporary capacity to be removed. This XML is used to
describe:

— the identifier of the capacity record to be used,
— the software model to be used for the capacity removal (optional), and
— the delta processor information to be used for the capacity removal (optional).

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of this
XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the capacity information
XML are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to length of the capacity information XML string.

pData A pointer to a the capacity information XML string.
pNext Should be set to NULL, since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
In a configured STP-only Coordinated Timing Network (CTN), one CPC has the role of Current
Time Server (CTS). If the CIN has both a Preferred Time Server and a Backup Time Server
configured, either one can be the CTS. This command swaps the role of CTS from Preferred Time
Server to Backup Time Server or vice versa. The target system must be the system that will
become the CTS.

This command requires the following argument:

STP ID
A string representing the current STP identifier for the Defined CPC object.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.
pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
This command sets the configuration for an STP-only Coordinated Timing Network (CTN). The
target system must be the system that will become the Current Time Server (CTS).

40 Application Programming Interfaces

This command requires the following arguments:

STP ID

A string representing the current STP identifier for the Defined CPC object. This is used
to verify that the CPC is a member of correct CTN.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.

pNext Should be set to the HWMCA_DATATYPE_T structure used to describe the next
argument.

Force Indicator

An indicator used to request conditional processing of the command depending on the
state of the target object.

The fields of the HWMCA_DATATYPE_T structure used to describe the Force Indicator
are:

ucType
Should be set to HWMCA_TYPE_INTEGER.

ulLength
Should be set to 2.

pData A pointer to a field containing the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

pNext Should point to the HWMCA_DATATYPE_T structure used to describe the next
argument.

STP Config XML

An XML fragment describing the configuration for the STP-only CTN. This XML

describes:

* the identifier for the STP-only CTN (optional)

* the identity of the CPC to act as Preferred Time Server for the CTN

* the identity of the CPC to act as Backup Time Server for the CTN (optional)

* the identity of the CPC to act as Arbiter for the CTN (optional)

* an indicator of which CPC has the role of Current Time Server (Preferred Time Server
or Backup Time Server)

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of
this XML data.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP-only CTN
configuration are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP Configuration data XML string.

pData A pointer to the STP Configuration data XML string.
pNext Should be set to NULL since this is the last argument accepted by this command.

Chapter 3. Console application APIs 41

HWMCA_SYSPLEX TIME_CHANGE_STP_ONLY_CTN_COMMAND
This command, sent to the Defined CPC with the role of Current Time Server (CTS) in an
STP-only Coordinated Timing Network (CTN), changes the STP ID portion of the CTN ID for the
entire STP-only CTN.

This command requires the following argument:

STP ID
A string representing the desired STP identifier for the Defined CPC object and all CPCs
that are members of the same STP-only CTN.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.
pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
This command allows a CPC to join an STP-only Coordinated Timing Network (CTN). The target
system cannot be the Current Time Server. If the CPC is already participating in an STP-only
CTN, it will be removed from that CTN and join the specified one. If the CPC has an ETR ID, it
will be removed.

This command requires the following argument:

STP ID
A string representing the STP identifier of the CTN that the Defined CPC object is joining.

The fields of the HWMCA_DATATYPE_T structure used to describe the STP ID are:

ucType
Should be set to HWMCA_TYPE_OCTETSTRING.

ulLength
Should be set to the length of the STP ID. This string (including the null
terminator) must be less than or equal to nine characters.

pData A pointer to a field containing the STP ID string.
pNext Should be set to NULL since this command only accepts one argument.

HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND
This command removes a CPC from an STP-only Coordinated Timing Network (CTN). The target
system cannot be the Current Time Server.

No arguments are accepted or required.

Data exchange APIs and commands API structures and definitions

The following structure and constant definitions can be found in the Data Exchange APIs. The most up to
date copy of this code is available on Resource Link at http://www.ibm.com/servers/resourcelink. Click
Services, and then Click API.

42 Application Programming Interfaces

Constant definitions

JEZIETITED ok kxx I IR hhhh ko xhhh kKK ko k ok kxx I I I hhhhhkkxhhh kKK k% *kkxrhhhhh kAR **A *xkk [
/* Defines for the Console Data Exchange */
/* Return Code Values. */

/**/
#define HWMCA DE_NO_ERROR

#define HWMCA_DE_NO_SUCH_OBJECT
#define HWMCA DE_INVALID DATA TYPE
#define HWMCA DE_INVALID DATA LENGTH
#define HWMCA_DE_INVALID DATA PTR
#define HWMCA_DE_INVALID DATA VALUE
#define HWMCA_DE_INVALID_ INIT_PTR
#define HWMCA_DE_INVALID_ID PTR
#define HWMCA DE_INVALID BUF PTR
#define HWMCA DE_INVALID BUF SIZE
#define HWMCA_DE_INVALID DATATYPE PTR 10
#define HWMCA DE_INVALID TARGET 11
#define HWMCA_DE_INVALID EVENT MASK 12
#define HWMCA DE_INVALID PARAMETER 13
#define HWMCA_DE_READ ONLY OBJECT 14
#define HWMCA DE_SNMP_INIT ERROR 15
#define HWMCA DE_INVALID OBJECT ID 16
#define HWMCA DE_REQUEST ALLOC_ERROR 17
#define HWMCA DE_REQUEST SEND_ERROR 18

OOoONOOUTE WN = O

#define HWMCA_DE_TIMEOUT 19
#define HWMCA DE_REQUEST RECV_ERROR 20
#define HWMCA_DE_SNMP_ERROR 21
#define HWMCA_DE_INVALID TIMEOUT 22
#define HWMCA DE_OBJECT BUSY 24
#define HWMCA_DE_INVALID_HOST 28

#define HWMCA DE_INVALID_COMMUNITY 29
#define HWMCA_DE_INVALID QUALIFIER 30
#define HWMCA_DE_PROTOCOL ERROR 31
#define HWMCA_DE_INVALID EVENT_ERROR 32
#define HWMCA DE_INVALID STACKNAME 97
#define HWMCA DE_REQUIRES QUALIFIER 98
#define HWMCA_DE_TRANSPORT ERROR 99

Chapter 3. Console application APIs

43

/**/

/* Defines for the Console Command Return Code Values

*/

/**/

#define HWMCA CMD_NO_ERROR

#define HWMCA_CMD_NO_SUCH_OBJECT
#define HWMCA_CMD_INVALID DATA TYPE
#define HWMCA_CMD_INVALID_DATA_LENGTH
#define HWMCA_CMD_INVALID DATA PTR
#define HWMCA_CMD_INVALID DATA VALUE
#define HWMCA_CMD_INVALID_INIT_PTR
#define HWMCA_CMD_INVALID_ID PTR
#define HWMCA_CMD_INVALID DATATYPE PTR
#define HWMCA_CMD_INVALID PARAMETER
#define HWMCA_CMD_REQUEST ALLOC_ERROR
#define HWMCA_CMD_REQUEST SEND_ERROR
#define HWMCA_CMD_TIMEQUT

#define HWMCA_CMD_REQUEST RECV_ERROR
#define HWMCA_CMD_SNMP_ERROR

#define HWMCA_CMD_INVALID TIMEOUT
#define HWMCA_CMD_INVALID CMD

#define HWMCA_CMD_OBJECT BUSY

#define HWMCA_CMD_INVALID OBJECT
#define HWMCA_CMD_COMMAND_FAILED
#define HWMCA_CMD_INITTERM OK

#define HWMCA_CMD_CBU_DISRUPTIVE_OK
#define HWMCA_CMD_CBU_PARTIAL HW
#define HWMCA_CMD_CBU_NO_SPARES
#define HWMCA_CMD_CBU_TEMPORARY
#define HWMCA_CMD_CBU_NOT_ENABLED
#define HWMCA_CMD_CBU_NOT AUTHORIZED
#define HWMCA_CMD_CBU_FAILED

#define HWMCA_CMD_CBU_ALREADY ACTIVE
#define HWMCA_CMD_CBU_INPROGRESS
#define HWMCA_CMD_CBU_CPSAP_SPLIT_CHG
#define HWMCA_CMD_INVALID MACHINE_STATE
#define HWMCA_CMD_NO_RECORDID

#define HWMCA_CMD_NO_SW_MODEL

#define HWMCA_CMD_NOT ENOUGH_RESOURCES
#define HWMCA_CMD_NOT_ENOUGH_ACTIVE_RESOURCES
#define HWMCA_CMD_ACT LESS_RESOURCES
#define HWMCA_CMD_DEACT MORE_RESOURCES
#define HWMCA_CMD_ACT TYPE_MISMATCH
#define HWMCA_CMD_API_NOT ALLOWED
#define HWMCA_CMD_CDU_IN_PROGRESS
#define HWMCA_CMD_MIRRORING RUNNING
#define HWMCA_CMD_COMMUNICATIONS NOT ACTIVE
#define HWMCA_CMD_RECORD_EXPIRED
#define HWMCA_CMD_PARTIAL_CAPACITY
#define HWMCA_CMD_INVALID REQUEST
#define HWMCA_CMD_ALREADY ACTIVE

44 Application Programming Interfaces

38

40
41
42
43
44
45
46
47
48
49
50

#define HWMCA_CMD_RESERVE_HELD 54

#define HWMCA_CMD_GENERAL XML _PARSING_ ERROR 55
#define HWMCA_CMD_STP_NOT_ENABLED 56
#define HWMCA_CMD_STP_MUST TARGET CTS 57
#define HWMCA_CMD_STP_INVALID CONFIG_SPECIFIED 58
#define HWMCA_CMD_STP_WRONG_CTN 59
#define HWMCA_CMD_STP_NOT VALID_FOR CTS 60
#define HWMCA_CMD_STP_IN_ETR_MIGRATION 61
#define HWMCA_CMD_STP_NODE_NOT_FOUND_IN_SYSTEM LIST 62
#define HWMCA_CMD_STP_CTNID_TAG_ERROR 63
#define HWMCA_CMD_STP_NODE_TAG_ERROR 64
#define HWMCA_CMD_STP_CONFIG_TAG_NOT_FOUND 65
#define HWMCA_CMD_STP_ACTIVE_CTS_TAG_ERROR 66
#define HWMCA_CMD_STP_INITIALIZE INCOMPLETE 67
#define HWMCA_CMD_STP_INVALID STP_ID 68
#define HWMCA_CMD_STP_LINKS_ERROR 69
#define HWMCA_CMD_STP_REQUIRES_FORCE_TO_CONFIGURE 70

***/

/* Defines for the Console Rexx I/F Return Code Value */
JEZZET TR kKK I I IR hKhhh kI I h* kKK H ok kKK I I IR KRRk hh kI *h* kKK Kk *kkxrhhhhh kAR *K*A *xkk [
#define HWMCA RX_INVALID STEM VAR 1000

[kK dkkkde ok kK Kk kxxrhhhhhkrrhhh kK Hk ok kxx I IR Khhhhhkkxhhh Kk kK k% kkkxrhhhhhkkrk*hA *xkk [
/* Miscellaneous defines for the Console APIs. */

/**/
#define HWMCA INFINITE WAIT -1
#define HWMCA_MAX_ID_LEN 80
#define HWMCA_MAX_COMMUNITY LEN 16

#define HWMCA MIN_EVENT BUF_SIZE ((sizeof (HWMCA_DATATYPE_T)2)+4+HWMCA_MAX_ID_LEN)
#define HWMCA_MAX_EVENT BUF_SIZE (HWMCA_MIN_EVENT BUF_SIZE+4+Q+8+9+4+4+4+9+4+A096+\

(((sizeof (HWMCA_DATATYPE_T)#2)+HWMCA_MAX_ID_LEN)*11))
1

#define HWMCA_TRUE

#define HWMCA_FALSE 0

#define HWMCA_API_PORT 3161

R R R Rk it e R T T ey
/* Defines for the Console Object Data Types. */
[kK gk kkk ok kk ok k ok ok k ok ok dk ok ok ke k ok ok kA *kkrx I I I hKhhh Ik R I I h* kKK H % *kKxIhhhhh kAR *K*A *kkk [
#define HWMCA_TYPE_SEQUENCE 0x30

#define HWMCA_TYPE_INTEGER 0x02

#define HWMCA_TYPE_OCTETSTRING 0x04

#define HWMCA_TYPE_NULL 0x05

#define HWMCA TYPE OBJECTID 0x06
#define HWMCA_TYPE_IPADDRESS 0x40
#define HWMCA_TYPE_COUNTER 0x41
#define HWMCA_TYPE_GAUGE 0x42
#define HWMCA_TYPE_TIMETICKS 0x43

Chapter 3. Console application APIs

45

/**/

/* Defines for the Console Event Notification Types.
/**/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_EVENT_COMMAND_RESPONSE
HWMCA_EVENT MESSAGE
HWMCA_EVENT_STATUS_CHANGE
HWMCA_EVENT_NAME_CHANGE
HWMCA_EVENT_ACTIVATE_PROF_CHANGE
HWMCA_EVENT _CREATED

HWMCA_EVENT _DESTROYED
HWMCA_EVENT EXCEPTION_STATE
HWMCA_EVENT_ENDED
HWMCA_EVENT_HARDWARE_MESSAGE
HWMCA_EVENT_OPSYS_MESSAGE
HWMCA_EVENT_NO_REFRESH_MESSAGE
HWMCA_EVENT_STARTED
HWMCA_EVENT_HARDWARE_MESSAGE_DELETE
HWMCA_EVENT_SECURITY_EVENT
HWMCA_EVENT_CAPACITY_CHANGE
HWMCA_EVENT_CAPACITY_RECORD_CHANGE
HWMCA_EVENT DISABLED WAIT
HWMCA_EVENT_ALL_EVENTS
HWMCA_DIRECT INITIALIZE
HWMCA_FORCE_CLIENT_PATH
HWMCA_SNMP_VERSION_2
HWMCA_TOLERATE_LOST EVENTS
HWMCA_QUALIFIER SPECIFIED
HWMCA_SNMP_USING_TCP
HWMCA_NO_EVENTS
HWMCA_RESEND_OPSYS_MESSAGES
HWMCA_EVENT NO_COMMAND_RESPONSE

0x00000000
0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00004000
0x00008000
0x00010000
0x00040000
Ox0005FFFF
0x20000000
0x10000000
0X08000000
0X02000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00020000

*/

/**/

/* Defines for the Console Static Object IDs. */
R T R R A R T Fkkkkkkkkkkhhkkkhkkkkkkk
#define HWMCA_OBJECT_PREFIX "1.3.6.1.4.1.2.6.42."

#define HWMCA_CONSOLE_ID "1.3.6.1.4.1.2.6.42.0" /* .X.X */
#define HWMCA_CFG_CPC_GROUP_ID "1.3.6.1.4.1.2.6.42.1" /% .x.x x/
#define HWMCA_CFG_CPC_ID "1.3.6.1.4.1.2.6.42.1.0" /* .X.X.* */
#define HWMCA_CPC_IMAGE_GROUP_ID "1.3.6.1.4.1.2.6.42.2" /* XX */
#define HWMCA CPC IMAGE_ID "1.3.6.1.4.1.2.6.42.2.0" /* .X.X.* */
#define HWMCA GROUPS GROUP 1D "1.3.6.1.4.1.2.6.42.3" /% XX */
#define HWMCA GROUPS OBJECT 1D "1.3.6.1.4.1.2.6.42.3.0" /* .X.X.*x.x */
#define HWMCA_COMMAND_PREFIX "1.3.6.1.4.1.2.6.42.4."

#define HWMCA_ACT RESET OBJECT ID "1.3.6.1.4.1.2.6.42.5.0" /* .X.X.%.% */
#define HWMCA_ACT_IMAGE_OBJECT_ID "1.3.6.1.4.1.2.6.42.6.0" /% .X.X.*.% %/
#define HWMCA_ACT_LOAD_OBJECT_ID "1.3.6.1.4.1.2.6.42.7.0" /* .X.X.*x.* %/
#define HWMCA ACT GROUP OBJECT 1D "1.3.6.1.4.1.2.6.42.8.0" /* .X.X.*.* */
#define HWMCA CAPACITY RECORD OBJECT ID "1.3.6.1.4.1.2.6.42.9.0" XXk ok %/
#define HWMCA_CFG_VM_GROUP_ID "1.3.6.1.4.1.2.6.42.10" XX %]
#define HWMCA_VM_OBJECT ID "1.3.6.1.4.1.2.6.42.10.0" /* .x.X.* */

46 Application Programming Interfaces

/**/

/* Defines for the Hardware Management Console Object Attribute ID suffix */
/**/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_COMMAND_OBJECT _ID_SUFFIX

HWMCA_COMMAND_CONDITION_CODE_SUFFIX
HWMCA_COMMAND_LAST INDICATOR_SUFFIX

HWMCA_ENDED_REASON_SUFFIX
HWMCA_ENDED_COMPONENT_SUFFIX
HWMCA_ENDED_TYPE_SUFFIX
HWMCA_COMMAND_CORRELATOR SUFFIX
HWMCA_NAME_SUFFIX

HWMCA_PARENT NAME_SUFFIX
HWMCA_OPSYS_NAME_SUFFIX
HWMCA_OPSYS_TYPE_SUFFIX
HWMCA_OPSYS_LEVEL_SUFFIX
HWMCA_SYSPLEX_NAME_SUFFIX
HWMCA_STATUS_ERROR_SUFFIX
HWMCA_BUSY_SUFFIX
HWMCA_MESSAGE_SUFFIX
HWMCA_MESSAGE_TYPE_SUFFIX
HWMCA_MESSAGE_TEXT SUFFIX
HWMCA_MESSAGE_MSG_ID_SUFFIX
HWMCA_MESSAGE_DATE_SUFFIX
HWMCA_MESSAGE_TIME_SUFFIX
HWMCA_MESSAGE_ALARM_SUFFIX
HWMCA_MESSAGE_PRIORITY SUFFIX
HWMCA_MESSAGE_HELD_SUFFIX
HWMCA_MESSAGE_PROMPT TEXT SUFFIX
HWMCA_MESSAGE_OSNAME_TEXT_SUFFIX
HWMCA_MESSAGE_REFRESH_SUFFIX
HWMCA_MESSAGE_TIMESTAMP
HWMCA_MESSAGE_IMAGE_LIST
HWMCA_STATUS_SUFFIX
HWMCA_EXPECTED_STATUS_SUFFIX
HWMCA_IMLMODE_SUFFIX
HWMCA_ACTIVATION_PROFILE_SUFFIX
HWMCA_LAST ACT PROFILE_SUFFIX
HWMCA_IP_ADDRESS_SUFFIX
HWMCA_SNA_ADDRESS_SUFFIX
HWMCA_MODEL_SUFFIX
HWMCA_TYPE_SUFFIX
HWMCA_MACHINE_SERTAL_SUFFIX
HWMCA_CPC_SERTAL_SUFFIX
HWMCA_CPC_ID_SUFFIX
HWMCA_OBJECT TYPE_SUFFIX
HWMCA_GROUP_CONTENTS_SUFFIX
HWMCA_ACT RESET LIST SUFFIX
HWMCA_ACT_IMAGE_LIST_SUFFIX
HWMCA_ACT_LOAD_LIST_SUFFIX
HWMCA_ACT_PROFILE_I0CDS_SUFFIX
HWMCA_ACT_PROFILE_IPLADDR SUFFIX
HWMCA_ACT_PROFILE_IPLPARM_SUFFIX
HWMCA_WEIGHT SUFFIX
HWMCA_CAPPED_SUFFIX
HWMCA_CBU_INSTALLED
HWMCA_CBU_ACTIVATED
HWMCA_CBU_ACTIVATION_DATE
HWMCA_CBU_EXPIRATION_DATE
HWMCA_NUMBER CBU_TEST LEFT

HWMCA_REAL_CBU_ACTIVATION_AVAILABLE

HWMCA_MINIMUM_WEIGHT SUFFIX
HWMCA_MAXIMUM_WEIGHT SUFFIX
HWMCA_WLM_MANAGED_SUFFIX
HWMCA_CURRENT_WEIGHT SUFFIX
HWMCA_CURRENT_CAPPED_SUFFIX
HWMCA_WORK_LOAD_UNITS_SUFFIX
HWMCA_RESERVE_ID_SUFFIX
HWMCA_ALERT SUFFIX
HWMCA_SERVICE_REQUIRED SUFFIX

"0.
"9.
"0.
"0.
"0.
"0.
"0.
"1.
"2.
3.
II4
II5.
II6.
II7.
II8.
ll9-
II9.
II9'
II9.
II9‘
II9.
II9.
ll9-
II9.
II9'
II9.
II9‘
II9'
II9.

"10.

"11
u12

"13.
"14.
"15.
"16.

"17

"18.
"19.
"20.

"21

"22.
"23.
"24.
"25.
"26.

u27

"28.
"29.
"30.

u31

"32.
"33.
"34.
"35.
"36.

u37

"38.
"39.
"40.

"41

"42.
"43.
"44.,
"45,
"46.

1"
2"
3"
4"
5"
6"
7"
0"
0"
0"

-0"

0"

OII

GII

GII

Gll

1II

le

3II

4II

5II

6II

7ll

8II

9II

10"
11"
12"
13"
OII
0"
0"
OII
OII
OII
OII
0"
OII
OII
OII
0"
OII
OII
OII
OII
OII
0"
OII
OII
OII
0"
OII
OII
GII
OII
OII
0"
OII
OII
OII
0"
OII
OII
OII
OII
OII

Chapter 3. Console application APIs

47

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_ALERT SUFFIX
HWMCA_SERVICE_REQUIRED_SUFFIX
HWMCA_DEGRADED_SUFFIX
HWMCA_CBU_ENABLED_SUFFIX
HWMCA_CLUSTER NAME_SUFFIX
HWMCA_CLUSTER_LIST SUFFIX
HWMCA_PARTITION_ID_SUFFIX
HWMCA_ACT_PROFILE_IPLTYPE_SUFFIX
HWMCA_ACT_PROFILE_WWPN_SUFFIX
HWMCA_ACT_PROFILE_BPS_SUFFIX
HWMCA_ACT_PROFILE_LUN_SUFFIX
HWMCA_ACT_PROFILE_BRLBA SUFFIX

HWMCA_ACT_PROFILE_OSLOADPARM_SUFFIX

HWMCA_EVENT _TEXT SUFFIX
HWMCA_EVENT_TIMESTAMP_SUFFIX
HWMCA_TFA_WEIGHT SUFFIX
HWMCA_IFA_CAPPED_SUFFIX
HWMCA_TFA_MINIMUM_WEIGHT SUFFIX
HWMCA_TFA_MAXIMUM_WEIGHT SUFFIX
HWMCA_TFA_CURRENT WEIGHT SUFFIX
HWMCA_TFA_CURRENT_CAPPED_SUFFIX
HWMCA_TFL_WEIGHT SUFFIX
HWMCA_TFL_CAPPED_SUFFIX
HWMCA_IFL_MINIMUM WEIGHT SUFFIX
HWMCA_TFL_MAXIMUM_WEIGHT SUFFIX
HWMCA_TFL_CURRENT WEIGHT SUFFIX
HWMCA_IFL_CURRENT_CAPPED_SUFFIX
HWMCA_ICF_WEIGHT SUFFIX
HWMCA_ICF_CAPPED_SUFFIX
HWMCA_ICF_MINIMUM_WEIGHT SUFFIX
HWMCA_ICF_MAXIMUM_WEIGHT SUFFIX
HWMCA_ICF_CURRENT _WEIGHT SUFFIX
HWMCA_ICF_CURRENT_CAPPED_SUFFIX

HWMCA_PROCESSOR_RUNNING_TIME_TYPE

HWMCA_PROCESSOR_RUNNING_TIME
HWMCA_END_TIMESLICE_IF_WAITSTATE
HWMCA_TIP_WEIGHT SUFFIX
HWMCA_T1P_CAPPED_SUFFIX
HWMCA_TIP_MINIMUM_WEIGHT SUFFIX
HWMCA_TTP_MAXIMUM_WEIGHT SUFFIX
HWMCA_TIP_CURRENT WEIGHT SUFFIX
HWMCA_TTP_CURRENT CAPPED_SUFFIX
HWMCA_00COD_INSTALLED SUFFIX
HWMCA_00COD_ACTIVATED SUFFIX
HWMCA_00COD_ENABLED_SUFFIX

HWMCA_00COD_ACTIVATION_DATE_SUFFIX

HWMCA_ACT GROUP_LIST SUFFIX

HWMCA_ACT_PROFILE_CAPACITY_ SUFFIX

HWMCA_GROUP_PROFILE_NAME_SUFFIX

48 Application Programming Interfaces

"45.
"46.
"47.
"48.
49,
"50.
'GII

||51

"52.
"53.
"54.
"55.
"56.
"57.
"58.
"59.
"60.
.0"
"62.
"63.
"64.
"65.
"66.
"67.
"68.
"69.
"70.
.OII

"61

II71

"72.
"73.
"74.
"75.
"76.
"77.
"78.
"79.
"80.
'OII
"82.
"83.
"84.
"85.
"86.
"87.
"88.
"89.
"90.
'GII
"92.
"93.

”81

||91

0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"
0"
0"
0"

0"
0"
0"
OII
0"
0"
0"
0"
0"

OII
0"
0"
0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"
0"
0"
0"

0"
0"

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_ACT_PROFILE_LOAD_AT ACTIVATION_SUFFIX
HWMCA_ACT_PROFILE_CENTRAL_STORAGE_SUFFIX
HWMCA_ACT_PROFILE_CENTRAL_STORAGE_RESERVED_SUFFIX
HWMCA_ACT_PROFILE_EXPANDED_STORAGE_SUFFIX
HWMCA_ACT_PROFILE_EXPANDED_STORAGE_RESERVED_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_CP_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_CP_RESERVED_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_IFA_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_IFA RESERVED SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_IFL_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED IFL_RESERVED SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_ICF_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_ICF_RESERVED_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED_IIP_SUFFIX
HWMCA_ACT_PROFILE_NUM_DEDICATED IIP_RESERVED SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_CP_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_CP_RESERVED_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IFA_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IFA RESERVED_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IFL_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IFL_RESERVED SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_ICF_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_ICF_RESERVED SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IIP_SUFFIX
HWMCA_ACT_PROFILE_NUM_SHARED_IIP_RESERVED SUFFIX
HWMCA_CAPACITY_ RECORD_LIST SUFFIX
HWMCA_PERM_SOFTWARE_MODEL_SUFFIX
HWMCA_PERMBILL_SOFTWARE_MODEL_SUFFIX
HWMCA_PERMALL_SOFTWARE_MODEL_SUFFIX
HWMCA_PERM_MSU_SUFFIX

HWMCA_PERMBILL_MSU_SUFFIX

HWMCA_PERMALL_MSU_SUFFIX
HWMCA_GEN_PROCESSOR_NUM_SUFFIX
HWMCA_SAP_PROCESSOR_NUM_SUFFIX
HWMCA_IFA_PROCESSOR_NUM_SUFFIX
HWMCA_TFL_PROCESSOR_NUM_SUFFIX
HWMCA_ICF_PROCESSOR_NUM_SUFFIX

HWMCA_TIP_PROCESSOR _NUM_SUFFIX
HWMCA_DEFECTIVE_PROCESSOR_NUM_SUFFIX
HWMCA_SPARE_PROCESSOR_NUM_SUFFIX
HWMCA_PENDING_PROCESSOR _NUM_SUFFIX
HWMCA_RECORD_ID_SUFFIX

HWMCA_RECORD_TYPE_SUFFIX
HWMCA_RECORD_ACTIVATION_STATUS_SUFFIX
HWMCA_RECORD_ACTIVATION_DATE_SUFFIX
HWMCA_RECORD_EXPIRE_DATE_SUFFIX
HWMCA_RECORD_ACT_EXPIRE_DATE_SUFFIX
HWMCA_RECORD_MAX_REAL_ACT DAYS_SUFFIX
HWMCA_RECORD_MAX_TEST ACT _DAYS_SUFFIX
HWMCA_RECORD_REM_REAL_ACT DAYS_SUFFIX

"94.0"
"95.0"
"96.0"
"97.0"
"98.0"
"99.0"

"100.
"101.
"102.
"103.
"104.
"105.
"106.
"107.
"108.
"109.
"110.
.OII
"112.
"113.
'OII
"115.
"116.
"117.
"118.
"119.
"120.
'OII
"122.
"123.
"124.
"125.
"126.
"127.
"128.
"129.
"130.
'OII

"111

"114

"121

"131

"132.
"133.
"134.
"135.
"136.
"137.
"138.
"139.
"140.
.OII
'OII
"143.

"141
"142

0"
0"
0"
0"
0"
0"
0"
0"
0"
0"
0"

OII
0"

0"
0"
0"
0"
OII
0"

0"
0"
0"
0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"
0"
0"
0"

0"

Chapter 3. Console application APIs

49

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_RECORD_REM_TEST ACT DAYS_SUFFIX
HWMCA_CAPACITY_ CHANGE_TYPE_SUFFIX
HWMCA_RECORD_CHANGE_TYPE_SUFFIX
HWMCA_RECORD_REM_REAL_COUNT_SUFFIX
HWMCA_RECORD_REM_TEST COUNT_SUFFIX
HWMCA_CAPACITY_ CHANGE_ALLOWED_SUFFIX
HWMCA_PSW_SUFFIX

HWMCA_PROCESSOR_SUFFIX
HWMCA_SCP_INITIATE_RESET SUFFIX
HWMCA_VERSTON_SUFFIX
HWMCA_POWER_VERSION_INFO_SUFFIX
HWMCA_POWER_BUFFER_TAG_SUFFIX
HWMCA_POWER_STATUS_REGISTER_SUFFIX
HWMCA_POWER_EVENT REGISTER SUFFIX
HWMCA_POWER_ERROR_REGISTER_SUFFIX
HWMCA_POWER_EXHAUST HEAT INDEX_SUFFIX
HWMCA_POWER_INLET TEMP_SUFFIX
HWMCA_POWER_AVG_POWER_SAMPLES_SUFFIX
HWMCA_POWER_PEAK_POWER_SAMPLES_SUFFIX
HWMCA_ALL_IP_ADDRESSES_SUFFIX
HWMCA_EC_MCL_INFO_SUFFIX
HWMCA_AUTO_SWITCH_ENABLED_SUFFIX
HWMCA_IPL_TOKEN_SUFFIX
HWMCA_SYSPLEX_TIME_STP_INFO_SUFFIX
HWMCA_ACT_PROFILE_STORESTATUS_SUFFIX
HWMCA_ACT_PROFILE_LOADTYPE_SUFFIX
HWMCA_CPU_COUNTER_BASIC_ENABLED_SUFFIX
HWMCA_CPU_COUNTER_PROBLEMSTATE_ENABLED_SUFFIX
HWMCA_CPU_COUNTER_CRYPTOACTIVITY ENABLED_SUFFIX
HWMCA_CPU_COUNTER_EXTENDED_ENABLED_SUFFIX
HWMCA_CPU_COUNTER_COPROCGROUP_ENABLED_SUFFIX
HWMCA_CPU_SAMPLING_BASIC_ENABLED_ SUFFIX
HWMCA_PENDING_GEN_PROCESSOR NUM_SUFFIX
HWMCA_PENDING_SAP_PROCESSOR_NUM_SUFFIX
HWMCA_PENDING_IFA_PROCESSOR_NUM_SUFFIX
HWMCA_PENDING_IFL_PROCESSOR_NUM_SUFFIX
HWMCA_PENDING_ICF_PROCESSOR_NUM_SUFFIX
HWMCA_PENDING_IIP_PROCESSOR _NUM_SUFFIX
HWMCA_ZBX_CHASSIS_LIST_SUFFIX
HWMCA_POWER BUFFER_SIZE_SUFFIX
HWMCA_ENCRYPT_AES_FUNCTIONS_SUFFIX
HWMCA_ENCRYPT DEA_FUNCTIONS_SUFFIX
HWMCA_LABEL_POWER_SUFFIX
HWMCA_POWER_SAMPLE_RATE_SUFFIX
HWMCA_GROUP_PROFILE_CAPACITY_ SUFFIX
HWMCA_LAST USED_LOAD_ADDR_SUFFIX
HWMCA_LAST USED_LOAD_PARM_SUFFIX
HWMCA_DESCRIPTION_SUFFIX
HWMCA_OPERATING_MODE_SUFFIX
HWMCA_CLOCK_TYPE_SUFFIX

HWMCA_TIME_OFFSET DAYS_SUFFIX
HWMCA_TIME_OFFSET_HOURS_SUFFIX
HWMCA_TIME_OFFSET MINUTES_SUFFIX
HWMCA_TIME_OFFSET_INCREASE_SUFFIX
HWMCA_LICCC_VALIDATION_ENABLED_SUFFIX
HWMCA_GLOBAL_PERFORMANCE_DATA CONTROL_SUFFIX
HWMCA_TO_CONFIGURATION_CONTROL_SUFFIX
HWMCA_CROSS_PARTITION_ AUTHORITY SUFFIX
HWMCA_LOGICAL_PARTITION ISOLATION SUFFIX

50 Application Programming Interfaces

"144.
"145.
"146.
"147.
"148.
"149.
"150.
"150.
"150.
'0"

"151

"152.
"153.
"154.
"155.
"156.
"157.
"158.
"159.
"160.
.OII
"162.
"163.
"164.
"165.
"166.
"167.
"168.
"169.
"170.
.OII
"172.
"173.
"175.
"176.
"177.
"178.
"179.
"180.
.0"
"182.
"183.
"184.
"185.
"186.
"192.
.0"
"202.
"203.
"204.
"205.
"206.
"207.
"208.
"209.
"210.
'OII
"212.
"213.
"214.

"161

"171

"181

"201

"211

0"
0"
0"
0"
0"
0"
0"
1||
2II

0"
0"
0"
0"
0"
0"
0"
Oll
GII

0"
0"
0"
0"
0"
OII
0"
0"
0"

0"
0"
0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"
0"
0"
0"

0"
0"
0"

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_ABS_CAPPED_SUFFIX
HWMCA_ABS_CAP_VALUE_SUFFIX
HWMCA_TFA_ABS_CAPPED_SUFFIX
HWMCA_IFA_ABS_CAP_VALUE_SUFFIX
HWMCA_TFL_ABS_CAPPED_SUFFIX
HWMCA_IFL_ABS_CAP_VALUE_SUFFIX
HWMCA_ICF_ABS_CAPPED_SUFFIX
HWMCA_ICF_ABS_CAP_VALUE_SUFFIX
HWMCA_TIP_ABS_CAPPED_SUFFIX
HWMCA_TIP_ABS_CAP_VALUE_SUFFIX

"217.
"218.
"219.
"220.
'OII
.OII
"223.
"224.
"225.
"226.

"221
"222

0"
0"
0"
0"

0"
0"
0"
0"

Chapter 3. Console application APIs

51

/**/

/* Defines for the Console Command Object IDs.

*/

/**/

"1.3

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

HWMCA_ACTIVATE_COMMAND
HWMCA_DEACTIVATE_COMMAND
HWMCA_SEND_OPSYS_COMMAND
HWMCA_RESETNORMAL_COMMAND
HWMCA_START_COMMAND
HWMCA_STOP_COMMAND
HWMCA_PSWRESTART _COMMAND
HWMCA_INITIALIZE API
HWMCA_TERMINATE_API
HWMCA_LOAD_COMMAND
HWMCA_HW_MESSAGE_REFRESH_COMMAND
HWMCA_RESETCLEAR_COMMAND
HWMCA_HW_MESSAGE_DELETE_COMMAND
HWMCA_ACTIVATE_CBU_COMMAND
HWMCA_UNDO_CBU_COMMAND
HWMCA_IMPORT PROFILE_COMMAND
HWMCA_EXPORT_PROFILE_COMMAND
HWMCA_RESERVE_COMMAND
HWMCA_EXTERNAL_INTERRUPT COMMAND
HWMCA_SCSI_LOAD_COMMAND
HWMCA_SCST_DUMP_COMMAND
HWMCA_SHUTDOWN_RESTART_COMMAND
HWMCA_ACTIVATE_00COD_COMMAND
HWMCA_UNDO_00COD_COMMAND
HWMCA_ADD_CAPACITY_COMMAND
HWMCA_REMOVE_CAPACITY_COMMAND

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
HWMCA_SYSPLEX_TIME_SET STP_CONFIG_COMMAND
HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND
HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY CTN_COMMAND
HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY CTN_COMMAND

HWMCA_LOAD_FROM_CDROM_COMMAND
HWMCA_ACTIVATE_COMMAND_SUFFIX
HWMCA_DEACTIVATE_COMMAND_SUFFIX
HWMCA_SEND_OPSYS_COMMAND_SUFFIX
HWMCA_RESETNORMAL_COMMAND_SUFFIX
HWMCA_START COMMAND_SUFFIX
HWMCA_STOP_COMMAND_SUFFIX
HWMCA_PSWRESTART COMMAND_SUFFIX
HWMCA_INITIALIZE API_SUFFIX
HWMCA_TERMINATE_API_SUFFIX
HWMCA_LOAD_COMMAND_SUFFIX

HWMCA_HW_MESSAGE_REFRESH_COMMAND_SUFFIX

HWMCA RESETCLEAR COMMAND SUFFIX

HWMCA HW_MESSAGE_DELETE_ COMMAND SUFFIX

HWMCA ACTIVATE CBU COMMAND SUFFIX
HWMCA UNDO_ CBU COMMAND SUFFIX

HWMCA_IMPORT PROFILE_COMMAND_SUFFIX
HWMCA_EXPORT_PROFILE_COMMAND_SUFFIX

HWMCA_RESERVE_COMMAND_SUFFIX

HWMCA_EXTERNAL_INTERRUPT_COMMAND_SUFFIX

HWMCA SCST_ LOAD COMMAND_SUFFIX
HWMCA SCSI DUMP COMMAND SUFFIX

HWMCA_SHUTDOWN_RESTART COMMAND_SUFFIX
HWMCA_ACTIVATE_00COD_COMMAND_SUFFIX

HWMCA_UNDO_00COD_COMMAND_SUFFIX
HWMCA_ADD_CAPACITY_COMMAND_SUFFIX

HWMCA REMOVE CAPACITY COMMAND SUFFIX
HWMCA SYSPLEX TIME SNAP CTS_| COMMAND SUFFIX

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND_SUFFIX
HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY CTN_COMMAND_SUFFIX
HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND_SUFFIX

HWMCA_SYSPLEX_TIME_LEAVE STP_ONLY CTN_COMMAND_SUFFIX

52 Application Programming Interfaces

WWWwWwwwww

PEPrPPErEPEpPPPPEPEAPEPEEREEAEEEEREREEEREREELEDE B

.6.1.4.1.2.6.42.
6.1.4.1.2.6.42.
6.1.4.1.2.6.42.
6.1.4.1.2.6.42.
6.1.4.1.2.6.42.
6.1.4.1.2.6.42
6.1.4.1.2.6.42.
6.1.4.1.2.6.42
6.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42
.1.4.1.2.6.42

IIlII

II2II

II3II

II4II

II5II

II6II

II7II

II8II

II9II
II10II
Illlll
II12II
II13II
II14II
II15II
II16II
II17II
II18II
II19II
II20II
II21II
II22II
II23II
II24II
II25II
II26II
II27II
II28II
II29II
II30II
II31II

4.

4
4
4
4

4.
4
4
4

1"
.2u
.3u
-4u
.5u
6"
.7u
-8"

'9II
.10"

11"

.12t
.13"
.14"
.15"
.16"

17"
18"
19"

.20"
21"
22"
23"
.24"
.25"

26"

27"
.28"

29"

.30"
31"
.99"

/**/

/* Defines for the Console Message Event Types. */
/**/

#define HWMCA_HARDWARE_MESSAGE 1

#define HWMCA_OPSYS_MESSAGE 2

[K gk ke kk ok k ko k ok ok k ok ok dok ok ok ke k ok kA L R T Fkkkkkkkkkkkkkkkkkhkk [
/* Defines for the CPC Managed Object Degraded Indicator */
/**/
#define HWMCA_NOT_DEGRADED 0x0000

#define HWMCA_DEGRADED_MEM 0x0001

#define HWMCA_DEGRADED MBA 0x0002

#define HWMCA_DEGRADED_NODE 0x0004

#define HWMCA DEGRADED RING 0x0008

#define HWMCA_ DEGRADED CBU 0x0010

#define HWMCA_DEGRADED_MRU 0x0020

#define HWMCA_DEGRADED_AMBIENT 0x0040

#define HWMCA_DEGRADED_MRU_IML 0x0080
/**/
/* Defines for the Hardware Management Console Status Values. */
/**/
#define HWMCA_STATUS_OPERATING 0x00000001

#define HWMCA_STATUS_NOT_OPERATING 0x00000002

#define HWMCA_ STATUS NO_ POWER 0x00000004

#define HWMCA STATUS NOT ACTIVATED 0x00000008

#define HWMCA_ STATUS EXCEPTIONS 0x00000010

#define HWMCA STATUS STATUS_CHECK 0x00000020

#define HWMCA_STATUS_SERVICE 0x00000040

#define HWMCA_STATUS_LINKNOTACTIVE 0x00000080

#define HWMCA_STATUS_POWERSAVE 0x00000100

#define HWMCA_ STATUS SERIOUSALERT 0x00000200

#define HWMCA STATUS ALERT 0x00000400

#define HWMCA_ STATUS ENVALERT 0x00000800

#define HWMCA_STATUS_SERVICE_REQ 0x00001000

#define HWMCA_STATUS_DEGRADED 0x00002000

#define HWMCA_STATUS_ STORAGE_EXCEEDED 0x01000000

#define HWMCA_STATUS_LOGOFF_TIMEOUT 0x02000000

#define HWMCA_ STATUS FORCED SLEEP 0x04000000

#define HWMCA_STATUS_IMAGE_NOT OPERATING ©x08000000
#define HWMCA_STATUS_IMAGE_NOT_ACTIVATED 0x10000000
#define HWMCA_STATUS_IMAGE_NOT CAPABLE 0x20000000
#define HWMCA_STATUS_UNKNOWN 0x40000000

/**/
/* Defines for the Hardware Management Console IML Mode Values. */
/**/
#define HWMCA_IML_ESA390_MODE 1
#define HWMCA_IML_S370_MODE 2
#define HWMCA_IML_FM_MODE 6
#define HWMCA IML FMAE _MODE 7
#define HWMCA_ IML HM_| MODE 8
#define HWMCA IML_ HMEA _MODE 9

#define HWMCA_IML_HMEX_MODE 10
#define HWMCA_IML_LPAR MODE 11
#define HWMCA_IML_ESA390TPF_MODE 12
#define HWMCA_IML_CF_PROD MODE 13
#define HWMCA_IML_FMEX MODE 14
#define HWMCA_IML_HMAS_MODE 15
#define HWMCA_IML_LINUXO_MODE 16
#define HWMCA_IML_ZVM_MODE 18
#define HWMCA_IML_ZAWARE_MODE 20

Chapter 3. Console application APIs

53

/**/

/* Defines for the Hardware Management Console IPL Type Values. */
/**/
#define HWMCA_IPLTYPE_STANDARD 1
#define HWMCA_IPLTYPE_SCSI 2
#define HWMCA_IPLTYPE_SCSIDUMP 3

/**/
/* Defines for the Console Object Type Values. */
/**/
#define HWMCA_CPC_GROUP 1
#define HWMCA_CPC_IMAGE_GROUP 2
#define HWMCA_CPC_USER_GROUP 3
#define HWMCA_CPC_IMAGE_USER_GROUP 4
#define HWMCA _CPC_OBJECT 5
#define HWMCA_CPC_IMAGE_OBJECT 6
#define HWMCA_CF_OBJECT 7
#define HWMCA_ACT_PROFILE_RESET 8
#define HWMCA_ACT PROFILE_IMAGE 9

#define HWMCA_ACT_PROFILE_LOAD 10
#define HWMCA_ACT_PROFILE_GROUP 11
#define HWMCA CAPACITY_ RECORD 12
#define HWMCA_VM_GROUP 13
#define HWMCA_VM_OBJECT 14
/**/
/* Defines for the Hardware Management Console Shutdown/Restart Types. x/
R R R 2 R R Rt ok krx I IR hhhhhhkrhhh kKK * % /

#define HWMCA RESTART APPLICATION 1
#define HWMCA_RESTART_CONSOLE 2
#define HWMCA_SHUTDOWN_CONSOLE 3
#define HWMCA_RESTART APPLICATION_ALTERNATE 4
#define HWMCA RESTART CONSOLE_ALTERNATE 5
#define HWMCA SHUTDOWN CONSOLE ALTERNATE 6

/**/

/* Defines for the Hardware Management Console Ended Event Reasons. */
/**/
#define HWMCA_ENDED_USER 1
#define HWMCA_ENDED_AUTOMATION 2
#define HWMCA_ENDED OTHER 3

/**/

/* Defines for the Hardware Management Console Processor Running Time types. =/
/**/

#define HWMCA DETERMINED_SYSTEM 0

#define HWMCA_DETERMINED_USER 1

/**************** """"""""" dhhkkkhkhkhkhkrhhkhkhhhhhhhrhhrk *********************/
/* Defines for the type of capacity record. */
/**/
#define HWMCA_CAPACITY_RECORD TYPE_CBU 1

#define HWMCA_CAPACITY_RECORD_TYPE_00COD 2

#define HWMCA_CAPACITY_RECORD_TYPE_PLANNED EVENT 3

#define HWMCA CAPACITY_RECORD_TYPE_LOANER 4

54 Application Programming Interfaces

/**/
/* Defines for the activation status of a capacity record. x/
/**/
#define HWMCA_CAPACITY_RECORD_STATUS_NOT_ACTIVATED 1
#define HWMCA_CAPACITY_RECORD_STATUS_REAL 2
#define HWMCA CAPACITY RECORD STATUS TEST 3
#define HWMCA_ CAPACITY RECORD STATUS_CAN_BE_ACTIVATED 4

/**/

/* Defines for the type of change for a HWMCA_EVENT CAPACITY CHANGE event. */
/** """"" kkkkhkkkhkhkkhkkkk **/
#define HWMCA_CAPACITY_FENCED_BOOK

#define HWMCA CAPACITY DEFECTIVE PROCESSOR
#define HWMCA_ CAPACITY CONCURRENT BOOK_REPLACE
#define HWMCA_CAPACITY_CONCURRENT_BOOK_ADD
#define HWMCA_CAPACITY CHECK_STOP

#define HWMCA_CAPACITY_CHANGES_ALLOWED

#define HWMCA_CAPACITY_CHANGES_NOT_ALLOWED

DO WO

/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_RECORD_CHANGE */
/* event. */
JEZEET TR kK xFIIIhKhhhh kI I h* Kk kK * ok kK xF I IR hKhhh Ik kI *h* Kk kK H % *kKxrrhhhhh AR *K*A *xkk [
#define HWMCA_CAPACITY_RECORD_ADD
#define HWMCA_CAPACITY_RECORD_DELTA
#define HWMCA_CAPACITY_RECORD DELETE
#define HWMCA_CAPACITY RECORD_ACCOUNTING
#define HWMCA_CAPACITY_ACTIVATION LEVEL
#define HWMCA_CAPACITY PRIORITY_ PENDING
#define HWMCA_CAPACITY_RECORD_OTHER

SO WO

/**/
/* Defines for the Image Activation Profile Operating Mode Values. */
/**/
#define HWMCA_ESA390_OPERATING_MODE
#define HWMCA_ ESA390TPF OPERATING MODE
#define HWMCA_CF_OPERATING_MODE
#define HWMCA_LINUX_OPERATING_MODE
#define HWMCA_FMEX_OPERATING_MODE
#define HWMCA_HMEX_OPERATING_MODE
#define HWMCA HMAS OPERATING_MODE
#define HWMCA ZVM_| OPERATING MODE
#define HWMCA_ ZAWARE OPERATING _MODE

O 00N OT S WN

/**/
/*Defines for the Hardware Management Console Image Profile Clock Type Values.*/
/**/
#define HWMCA_CLOCK TYPE_STANDARD 0
#define HWMCA_CLOCK_TYPE_LPAR 1

Chapter 3. Console application APIs

55

/**/

/* Defines for the type of capacity record. x/
/**/
#define HWMCA_CAPACITY_RECORD_TYPE_CBU 1

#define HWMCA CAPACITY RECORD_ TYPE 00CoD 2

#define HWMCA CAPACITY RECORD TYPE PLANNED_EVENT 3

#define HWMCA_CAPACITY_RECORD_TYPE_ LOANER 4
/**/
/* Defines for the activation status of a capacity record. x/
/**************** """"""""" khkkkhkhkrhhkhkhhkhhhhhrhhrk *********************/
#define HWMCA CAPACITY RECORD STATUS NOT_ACTIVATED 1

#define HWMCA_CAPACITY_RECORD_STATUS_REAL 2

#define HWMCA CAPACITY RECORD STATUS TEST 3

#define HWMCA_CAPACITY RECORD_STATUS CAN_BE_ACTIVATED 4
/**/
/* Defines for the type of change for a HWMCA_EVENT_CAPACITY_CHANGE event. */
/**/
#define HWMCA_CAPACITY_FENCED_BOOK

#define HWMCA_CAPACITY_DEFECTIVE_PROCESSOR
#define HWMCA_CAPACITY_CONCURRENT_BOOK_ REPLACE
#define HWMCA_CAPACITY_CONCURRENT_BOOK_ADD
#define HWMCA CAPACITY CHECK_STOP

#define HWMCA_CAPACITY CHANGES ALLOWED

#define HWMCA CAPACITY CHANGES_NOT_ALLOWED

DO WN O

/**/

/* Defines for the type of change for a HWMCA EVENT CAPACITY_ RECORD_CHANGE */
/* event. */
/**/
#define HWMCA_CAPACITY_RECORD_ADD
#define HWMCA CAPACITY RECORD DELTA
#define HWMCA_CAPACITY_RECORD_DELETE
#define HWMCA_CAPACITY_RECORD_ACCOUNTING
#define HWMCA_CAPACITY_ACTIVATION_LEVEL
#define HWMCA_CAPACITY_PRIORITY_PENDING
#define HWMCA_CAPACITY RECORD_OTHER

DO WN = O

56 Application Programming Interfaces

Data exchange APIs SNMP target structure
(HWMCA_SNMP_TARGET_T)

/**/

/* Conso

le SNMP Target Structure

*/

/**/

struct HWMCA_SNMP_TARGET S {

PVOID

CHAR

UINT
CHAR

CHAR

UINT
}s

typedef
typedef
#define

pHost; /* A pointer to a null terminated */
/* string specifying the host name or x/
/* internet address for the target */
/* Console. */
/* */

szCommunity [HWMCA_MAX_COMMUNITY LEN]; /* Community name to be used x/
/* for requests. */
ulSecurityVersion; /* Security version used v2c or v3 */

szUsername [HWMCA_MAX_USERNAME_LEN]; /* Username to be used for v3 auth */

szPassword [HWMCA MAX_ USERNAME LEN]; /+ Password to be used for v3 auth */

ulReserved; /* Reserved field.

struct HWMCA_SNMP_TARGET S HWMCA_SNMP_TARGET T;
HWMCA_SNMP_TARGET T HWMCA_SNMP_TARGET P;
HWMCA_SNMP_TARGET SIZE sizeof (HWMCA_SNMP_TARGET T)

*/

Chapter 3. Console application APIs

57

Data exchange APIs initialize structure (HWMCA_INITIALIZE_T)

[Fk gk ke ko dokkk ok k ok ko k ok ok kok kR o e o o o ok ok ok ok ok ko ek kK ek e e ek ok ek ok ok ok o ko ke ko /
/* Console Initialize Structure */
/*** * *k*k * /
struct HWMCA_INITIALIZE S {
PVOID pTarget; /* Pointer to data specifying the x/
/* target Hardware Management Console =*/
/* for the request. x/
/* */
/* For the SNMP APIs, this is an */
/* HWMCA_SNMP_TARGET S structure. */
/* */
UINT ulEventMask; /* A mask specifying the event */
/* notifications that the application =/
/* wants to register for. x/
/* */
/* - HWMCA_EVENT_COMMAND_RESPONSE */
/* - HWMCA_EVENT_MESSAGE */
/* - HWMCA_EVENT_STATUS_CHANGE */
/* - HWMCA_EVENT NAME_CHANGE */
/* - HWMCA_EVENT_ACTIVATE_PROF_CHANGE */
/* - HWMCA_EVENT_CREATED */
/* - HWMCA_EVENT_DESTROYED */
/* - HWMCA_EVENT_EXCEPTION_STATE */
/* - HWMCA_EVENT_ENDED */
/* - HWMCA_EVENT_HARDWARE_MESSAGE */
/* - HWMCA_EVENT_OPSYS_MESSAGE */
/* - HWMCA_EVENT_NO_REFRESH_MESSAGE ~ */
/* - HWMCA_EVENT_STARTED */
/* - HWMCA_EVENT_HARDWARE_MESSAGE_DELETE*/
/* - HWMCA_DIRECT INITIALIZE */
/* - HWMCA_FORCE_CLIENT_PATH */
/* - HWMCA_SNMP_VERSION 2 */
/* */
ULONG ulReserved; /* Must be zero. x/
union {
struct {
INT iAgentSocket; /* Socket used to communicate with the x/
/* SNMP agent on the target Console.
UINT ullnetAddr; /* Internet address for the SNMP agent.x*/
UINT uiSecVersion;
CHAR szCommunity[HWMCA_MAX_COMMUNITY_LEN]; /* Community name to be */
/* used for requests. */
struct {
unsigned char bAuthEngineId[HWMCA MAX ID LEN]; // Don't know what the real max is supposed to be
UINT ulAuthEngineldlLength;
CHAR szUsername[HWMCA_MAX_USERNAME_LEN] ;
CHAR szPassword[HWMCA MAX_ USERNAME_LEN];
UINT ulAuthEngineBoots;
UINT ulAuthEngineTime;
UINT ulMsgld;
unsigned char bPrivateKey[16];
UINT uiSalt;
}v3;
} snmp;

} protocol;

}s

typedef struct HWMCA INITIALIZE S HWMCA INITIALIZE T;

typedef HWMCA_INITIALIZE T =«

HWMCA_INITIALIZE P,

#define HWMCA_INITIALIZE SIZE sizeof(HWMCA INITIALIZE T)

58 Application Programming Interfaces

Data exchange APIs datatype structure (HWMCA_DATATYPE_T)

JEZIETITED ok e e ok o ok ko ok ko ke ok ko ok e ek ok ok ok ok ko ko ke ko e e o o o e ok ok ok ok ko *xkk [
/* Console Data Type Structure */
/************************************ ** *k*k *k*k *********************/
struct HWMCA_DATATYPE_S {
UCHAR ucType; /* Type of the data: */
/* - HWMCA_TYPE_SEQUENCE */
[* - HWMCA_TYPE_INTEGER */
/* - HWMCA_TYPE_OCTETSTRING */
/% - HWMCA_TYPE_NULL */
/* - HWMCA_TYPE_OBJECTID */
/* HNMCA TYPE IPADDRESS */
ULONG ullLength; /* Length of the data. */
PVOID pData; /* Pointer to the data itself. */
struct HWMCA DATATYPE_S =*pNext; /* Pointer to next data type structure */

}s

typedef struct HWMCA_DATATYPE_S HWMCA DATATYPE T;
typedef HWMCA DATATYPE T = HWMCA_DATATYPE_P;
#define HWMCA_DATATYPE SIZE sizeof (HWMCA_DATATYPE_T)

/**/

/* Hardware Management Console Event Qualifier Structure */
/** """"" khhkkkrhkhkrhhkhhhhhrhhrk ***/
struct HWMCA_EVENT QUALIFIER S {
unsigned int ulEventMask; /* Event mask for qualifier */
unsigned int ulType; /* Qualifier type */
union {
char szName[256] ; /* Image name for 0S msgs events */
char cReserved[256]; /* Reserved space */
} type; /* union of qualifier data */

struct HWMCA_EVENT_QUALIFIER_S =*pNext;/* Pointer to next qualifier struct =*/
bs
typedef struct HWMCA EVENT QUALIFIER S HWMCA EVENT QUALIFIER T;
typedef HWMCA_EVENT QUALIFIER T = HWMCA_EVENT_QUALIFIER P;
#define HWMCA_EVENT_QUALIFIER _SIZE sizeof(HWMCA_EVENT_QUALIFIER_T)
#define HWMCA_QUALIFIER_TYPE_NAME 0x00000001

Function prototypes

/**/

/* Console Data Exchange Function Prototypes */
/**/

extern ULONG EXPENTRY Hwmcalnitialize(

HWMCA_INITIALIZE_P, /* Pointer to data exchange initialization =%/
/* structure. */
ULONG) 3 /* Time to wait for the next event */
/* notification (in milliseconds). x/

extern ULONG EXPENTRY HwmcaGet (

HWMCA_INITIALIZE P, /* Pointer to data exchange initialization =*/
/* structure. */
PSZ, /* Pointer to null terminated object ID */
/* string. */
PVOID, /* Pointer to an output buffer for the */
/* returned data. */
ULONG, /* Size of the output buffer. */
PULONG, /* Pointer to an area where the number of */
/* total bytes needed for this Get request */
/* is returned. */
ULONG) ; /* Time to wait for the next event */
/* notification (in milliseconds). */

Chapter 3. Console application APIs

59

extern ULONG EXPENTRY HwmcaGetNext (

HWMCA_INITIALIZE P,
PSz,

PVOID,

ULONG,

PULONG,

ULONG) 3

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Pointer to data exchange initialization
structure.

Pointer to null terminated object ID
string.

Pointer to an output buffer for the
returned data.

Size of the output buffer.

Pointer to an area where the number of
total bytes needed for this Get request
is returned.

Time to wait for the next event
notification (in milliseconds).

extern ULONG EXPORTTYPE HwmcaGetBuTk(

HWMCA_INITIALIZE P,

HWMCA_DATATYPE_P,

UINT,
UINT,
PVOID,

ULONG,
PULONG,

ULONG) ;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

60 Application Programming Interfaces

Pointer to data exchange initialization
structure.

Pointer to a linked Tist of
HWMCA_DATATYPE_T structures used to
specify the object IDs to use in the
GetBulk request.

Count of non-repeaters for the request.
Maximum repititions for the request.
Pointer to an output buffer for the
returned data.

Size of the output buffer.

Pointer to an area where the number of
total bytes needed for this Get request
is returned.

Time to wait for the next event
notification (in milliseconds).

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

extern ULONG EXPENTRY HwmcaSet (

HWMCA_INITIALIZE_P, /*

/*

PSZ, /*

/*

HWMCA_DATATYPE_P, /*

/*

/*

ULONG) 3 /*

/*

extern ULONG EXPENTRY HwmcaWaitEven

HWMCA_INITIALIZE_P, /*
/*

PVOID, /*
/*

ULONG, /*
PULONG, /*
/*

/*

ULONG) 3 /*
/*

extern ULONG EXPENTRY HwmcaTerminat
HWMCA_INITIALIZE P, /*

/*
ULONG) 3 /*
/*

extern ULONG EXPENTRY HwmcaCommand (

HWMCA_INITIALIZE P, /*
/*
PSZ, /*

/*
PSz, /*
/*
HWMCA_DATATYPE_P, /*

/*

/*

ULONG) 3 /*

/*

extern ULONG EXPORTTYPE HwmcaCorrel

HWMCA_INITIALIZE P, /*
/*
PSZ, /%
/*
PSz, /*

/*
HWMCA_DATATYPE_P, /*
/*

/*
ULONG, /*
/*
void *, /*
unsigned int); /*

extern ULONG EXPORTTYPE HwmcaRegist

HWMCA_INITIALIZE P, [
UINT, /%
HWMCA_EVENT QUALIFIER P, /*

ULONG) 3 /*
/*

Pointer to data exchange initialization
structure.

Pointer to null terminated object ID
string.

Pointer to a Tinked Tist of
HWMCA_DATATYPE_T structures used to
represent the data.

Time to wait for the next event
notification (in milliseconds).

t(

Pointer to data exchange initialization
structure.

Pointer to an output buffer for the
returned data.

Size of the output buffer.

Pointer to an area where the number of
total bytes needed for this Get request
is returned.

Time to wait for the next event
notification (in milliseconds).
e(

Pointer to data exchange initialization
structure.

Time to wait for the next event
notification (in milliseconds).

Pointer to data exchange initialization
structure.

Pointer to null terminated object ID
string that the command target.
Pointer to null terminated object ID
string that command identifier.
Pointer to a linked Tist of
HWMCA_DATATYPE_T structures used to
represent the argument data.

Time to wait for the next event
notification (in milliseconds).
atedCommand (

Pointer to data exchange initialization
structure.

Pointer to null terminated object ID
string that the command target.
Pointer to null terminated object ID
string that command identifier.
Pointer to a linked T1ist of
HWMCA_DATATYPE_T structures used to
represent the argument data.

Time to wait for the next event
notification (in milliseconds).
Pointer to correlator data.

Size of correlator data.

er(

Pointer to data exchange initialization
New event mask to be used

New event qualifiers to be used

Time to wait for the next event
notification (in milliseconds).

Chapter 3. Console application APIs

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

61

extern ULONG EXPENTRY HwmcaBuildId(

PSZ, /* Pointer to a buffer where the built object*/
/* identifier string is to be placed. x/
PSZ, /* Pointer to the prefix string to be used =/
/* for the object identifier to be built. */
/* - HWMCA_CONSOLE_ID */
/* - HWMCA_CFG_CPC_GROUP_ID */
/* - HWMCA CFG_CPC_ID */
/* - HWMCA_CPC_IMAGE_GROUP_ID */
/* - HWMCA_CPC_IMAGE_ID */
/* - HWMCA_GROUPS_GROUP_ID */
/* - HWMCA_COMMAND_PREFIX */
/* - HWMCA_ACT_RESET_OBJECT_ID */
/* - HWMCA_ACT_IMAGE_OBJECT_ID */
/* - HWMCA_ACT_LOAD_OBJECT 1D */
PSz, /* Pointer to the attribute suffix string to */

/* be used for the object identifier to be =/
/* build. This can be specified as NULL, */
/* when building an ID for an object itself, */
/* as opposed to an attribute object ID. */
PSZ, /* Pointer to the Group name to be used for =*/
/* building the object identifier. This can */
/* be specified as NULL, when building an ID */
/* for a predefined group or an object from =*/
/* a predefined group. */
PSZ); /* Pointer to the Object name to be used for =*/
/* building the object identifier. This can */
/* be specified as NULL, when building an ID */
/* for a group object. */

extern ULONG EXPENTRY HwmcaBuildAttributeld(
PSZ, /* Pointer to a buffer where the built object*/
/* identifier string for the attribute is to */
/* be placed. */
PSZ, /* Pointer to the object identifier for the =/
/* object for which the attribute identifier */
/* is to be built. */
PSZ); /* Pointer to the attribute suffix string to */
/* be used for the attribute identifier to bex/
/* build. */

Data exchange APIs and commands APl example

Refer to the following pages for some example code using the Console Data Exchange APIs and
Commands API. A copy of this code can be found on Resource Link at http://www.ibm.com/servers/
resourcelink. Click Services, and then Click API.

For more information about the parameters required for this example, simply execute the program with
no arguments. This will print out help information to the screen. Some sample invocations for this
example program are:

* HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.0.23.0

This will perform a get operation for the Group Contents attribute of the Console object.
« HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.1.23.0

Performs a get operation for the Group Contents attribute of the Defined CPC Group object.
* HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.2.23.0

Performs a get operation for the Group Contents attribute of the CPC Images Group object.
* HWMCATST 1 9.130.1.1 1.3.6.1.4.1.2.6.42.1.0.10.0.3362806951

Performs a get operation for the Status attribute of the Defined CPC object named CPCO1.

62 Application Programming Interfaces

* HWMCATST 4 9.130.1.1 1.3.6.1.4.1.2.6.42.1.0.3362806951 1.3.6.1.4.1.2.6.42.4.1
Sends an Activate command request to the Defined CPC object named CPCO1.
* HWMCATST 5 9.130.1.1 255 -1

Waits forever for all types of event notifications.

/*********************** Defines ***********************************/

#define INCL_DOS

#define HWMCAAPI_TIMEOUT 30000
#define COMMUNITY "pubTlic"

/*********************** Inc]ude Fi]es ***********************************/
#include <os2.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <memory.h>

#include "hwmcaapi.h"

[Fk ok kk ok kk ko kk ok kkkkkkkok Function Prototypes —s#kkxmskdkkkdkxkskdkthdkkhkdktsk/

VOID parse_and_print_get (HWMCA DATATYPE_P);
VOID parse_and_print_get group_contents(HWMCA _DATATYPE_P);

JEZZETITEL Kk kkkhhk Kk *kkx MATn Fxxkkkkkkkkkrrhhhhkhkkkx kkkxrhhhhhk kxR * kA *%/
void main(argc, argv, envp)
int argc;

char *argv[];
char *envp[];

APIRET usRc; /* Local return code from API calls
ULONG ullength; /* Number of bytes passed to an API call
ULONG ulBytesNeeded; /* Number of bytes needed for an API call
USHORT usfContinue; /* Local continue processing flag
HWMCA_DATATYPE_T tHwmcaDataType; /* HWMCA DataType structure
HWMCA_DATATYPE_P pHwmcaDataType; /* Ptr to a HWMCA DataType structure
HWMCA_DATATYPE_T aHwmcaDataType[10]; /* HWMCA DataType structure

ULONG aulCmdData[10]; /% array of command integer data

HWMCA_INITIALIZE_T tHwmcalnitialize; /* Structure for Hwmcalnitialize API call

*/
*/
*/
*/
*/
*/
*/
*/
*/

HWMCA_SNMP_TARGET_T tHwmcaSnmpTarget; /* Target structure for Hwmcalnitialize callx*/

INT i, Js /* loop variables
CHAR cEventBuf[HWMCA MAX_EVENT BUF_SIZE];

CHAR szOID[HWMCA MAX ID_LEN];

PSz pszAttribute, pszGroupName, pszObjectName;

usfContinue = TRUE;
memset (&tHwmcaInitialize,'\0',HWMCA INITIALIZE_SIZE);
if (argc >= 4) { /* Proper number of initial arguments passed */
switch (atoi(argv[1l])) {
case 1: /* Get request =/
break;
case 2: /* Get-Next request */
break;
case 3: /* Set request */
if (argc != 6) { /* Proper number of arguments passed */
usfContinue = FALSE;
} /% endif x/
break;

Chapter 3. Console application APIs

*/

63

case 4: /x Command request */
if (argc < 5) { /* Proper number of arguments passed */
usfContinue = FALSE;
} /% endif */
break;
case 5: /x WaitEvent request */
if (argc < 5) { /* Proper number of arguments passed x/
usfContinue = FALSE;
} else {
tHwmcalnitialize.ulEventMask = (ULONG)atol(argv[3]);
} /% endif %/
break;
case 6: /* BuildId request */
break;
case 7: /* BuildAttributeld request */
if (argc < 5) { /* Proper number of arguments passed x/
usfContinue = FALSE;
} /% endif =/
break;
default:
usfContinue = FALSE;
break;
} /x endswitch */
if (usfContinue) {
tHwmcalnitialize.pTarget = &tHwmcaSnmpTarget;
tHwmcaSnmpTarget.pHost = argv[2];
strcpy (tHwmcaSnmpTarget.szCommunity,COMMUNITY) ;
usRc = Hwmcalnitialize(&tHwmcalnitialize, (ULONG)HWMCAAPI_TIMEOUT);
if (lusRc) { /* Initialize with HWMCA API server successful =*/
printf("Hwmcalnitialize call was successful\n");
printf("Hwmcalnitialize target host = %s\n",
tHwmcaSnmpTarget.pHost) ;
printf("Hwmcalnitialize target community name = %s\n",
tHwmcaInitialize.protocol.snmp.szCommunity);
printf("Hwmcalnitialize socket = %1d\n",
tHwmcalnitialize.protocol.snmp.iAgentSocket);
printf("Hwmcalnitialize agent Internet address = %x\n",
tHwmcalnitialize.protocol.snmp.ulInetAddr);
switch ((atoi(argv[1]))) {

64 Application Programming Interfaces

case 1: /* Get request =/
ullLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA DATATYPE P)NULL;
memset (&tHwmcaDataType, '\0',HWMCA_DATATYPE_SIZE);
usRc = HwmcaGet (&tHwmcalnitialize,argv[3],&tHwmcaDataType,
ullLength,&u1BytesNeeded, (ULONG)HHWMCAAPI_TIMEOUT);
if (lusRc) { /* Data returned from HwmcaGet */
/* Need a larger buffer for the Get request =/
if (ulBytesNeeded > ullLength) {
pHwmcaDataType = (HWMCA DATATYPE P) (malloc(ulBytesNeeded));
if (pHwmcaDataType) {
memset (pHwmcaDataType, '\0',ulBytesNeeded);
uTLength = ulBytesNeeded;
usRc = HwmcaGet (&tHwmcalnitialize,argv[3],pHwmcaDataType,
ullLength,&ulBytesNeeded, (ULONG) HWMCAAPI TIMEOUT);
if (lusRc) { /* Get request successful =/
/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {
parse_and_print_get_group_contents(pHwmcaDataType);
} else {
parse_and_print_get(pHwmcaDataType);
} /% endif =/
free(pHwmcaDataType);
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /* endif */

} else {
printf("Error in allocating %1d bytes for an HwmcaGet call",
ulBytesNeeded) ;
} /* endif */
} else {

/* Check if it is a Group contents Get %/
if (strstr(argv[3],HWMCA_GROUP_CONTENTS SUFFIX)) {
parse_and_print_get_group_contents(&tHwmcaDataType);
} else {
parse_and print_get(&tHwmcaDataType);
} /% endif =/
} /% endif =/
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /% endif =/
break;

Chapter 3. Console application APIs

65

case 2: /x Get-Next request */
ullLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA DATATYPE_P)NULL;
memset (&tHwmcaDataType, '\0',HWMCA_DATATYPE_SIZE);
usRc = HwmcaGetNext (&tHwmcalnitialize,argv[3],&tHwmcaDataType,
ullLength,&ulBytesNeeded, (ULONG)HWMCAAPI TIMEOUT)
if (lusRc) { /* Data returned from HwmcaGetNext =*/
/* Need a larger buffer for the Get request =/
if (ulBytesNeeded > ullLength) {
pHwmcaDataType = (HWMCA DATATYPE P) (malloc(ulBytesNeeded));
if (pHwmcaDataType) {
memset (pHwmcaDataType, '\0',ulBytesNeeded);
uTLength = ulBytesNeeded;
usRc = HwmcaGetNext (&tHwmcalnitialize,argv[3],
pHwmcaDataType,ullLength,
&u1BytesNeeded, (ULONG) HWMCAAPI_TIMEOUT) 5
if (lusRc) { /* Get request successful =*/
/* Check if it is a Group contents Get-Next =/
if ((pHwmcaDataType->ucType == HWMCA_TYPE_OBJECTID) &&
(strstr(pHwmcaDataType->pData,HWMCA_GROUP_CONTENTS_SUFFIX))) {
parse_and_print_get_group_contents(pHwmcaDataType);
} else {
parse_and_print_get (pHwmcaDataType);
} /* endif =/
free(pHwmcaDataType) ;
} else {
printf("Error in HwmcaGetNext call return code = %1d\n",usRc);
} /x endif */

} else {
printf("Error in allocating %1d bytes for an HwmcaGet call",
ulBytesNeeded) ;
}/* endif */
} else {

/* Check if it is a Group contents Get-Next */
if ((pHwmcaDataType->ucType == HWMCA_TYPE_OBJECTID) &&
(strstr(pHwnmcaDataType->pData,HWMCA GROUP_CONTENTS _SUFFIX))) {
parse_and_print_get_group_contents(&tHwmcaDataType);
} else {
parse_and_print_get(&tHwmcaDataType);
} /* endif */
} /% endif =/
} else {
printf("Error in HwmcaGetNext call return code = %1d\n",usRc);
} /% endif =/
break;

66 Application Programming Interfaces

case 3: /* Set request */
ullLength = HWMCA_DATATYPE_SIZE;
pHwmcaDataType = (HWMCA DATATYPE P)NULL;
memset (&tHwmcaDataType, '\0',HWMCA_DATATYPE_SIZE);
tHwmcaDataType.ucType = (UCHAR)atoi(argv[4]);
if (tHwmcaDataType.ucType == HWMCA_TYPE_OCTETSTRING) {

tHwmcaDataType.ullLength = strlen(argv[5])+1;
tHwmcaDataType.pData = argv[5];

} else {
tHwmcaDataType.ullength = sizeof (ULONG);
ulBytesNeeded = atol(argv[5]);
tHwmcaDataType.pData = &ulBytesNeeded;

} /% endif =/
usRc = HwmcaSet (&tHwmcalInitialize,argv[3],&tHwmcaDataType, (ULONG)HWMCAAPI_TIMEOUT);
if (usRc) {
printf("Error in HwmcaSet call return code = %1d\n",usRc);
} /% endif =/
break;
case 4: /x Command request */
for (i=5, j=0; (((i+2) <= argc) && (j < 10)); i+=2, j++) {
memset (&ahWmcaDataType[j],'\0',HWMCA DATATYPE SIZE);
aHwmcaDataType[j].pNext = &(aHwmcaDataType[j+1]);
aHwmcaDataType[j].ucType = (UCHAR)atoi(argv[i]);
switch (aHwmcaDataType[j].ucType) {
case HWMCA_TYPE_OCTETSTRING:
aHwmcaDataType[j].ulLength = strlen(argv[i+1])+1;
aHwmcaDataType[j] .pData argv[i+1];
break;
case HWMCA_ TYPE_NULL:
aHwmcaDataType[j].ulLength = 0;

aHwmcaDataType[j] .pData = (PVOID)NULL;
break;

default:
aHwmcaDataType[j] .ulLength = sizeof(ULONG);
aulCmdDatal[j] = atol(argv[i+l]);
aHwmcaDataType[j] .pData = &aulCmdData[j];
break;

} /% endswitch */
} /% endfor */
if (3 ==0) {
pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;
} else {
aHwmcaDataType[j-1].pNext = (HWMCA_DATATYPE P)NULL;
pHwmcaDataType = aHwmcaDataType;
} /% endif =/
usRc = HwmcaCommand (&tHwmcalInitialize,argv[3],argv[4],
pHwmcaDataType, (ULONG) HWMCAAPI_TIMEOUT);
if (lusRc) {
printf("HwmcaCommand request was successful; waiting for the command response event.\n");
while (lusRc) {
usRc = HwmcaWaitEvent(&tHwmcalnitialize,cEventBuf,sizeof(cEventBuf),
&u1BytesNeeded, (ULONG) HWMCAAPI_TIMEOUT);
if (lusRc) { /* WaitEvent request successful */
if (ulBytesNeeded <= sizeof(cEventBuf)) {
parse_and_print_get ((HWMCA_DATATYPE_P)cEventBuf);
} else {
printf("Event buffer not Targe enough!\n");
} /% endif =/

Chapter 3. Console application APIs 67

} else {
printf("Error in HwmcaWaitEvent call return code = %1d\n",usRc);
} /% endif =/
} /% endwhile x/
} else {
printf("Error in HwmcaCommand call return code = %1d\n",usRc);
} /% endif */
break;
case 5: /* WaitEvent request */
usRc = 0
while ((

lusRc) && (argc >= 5)) {
usRc =

HwmcaWaitEvent (&tHwmcalnitialize,cEventBuf,sizeof (cEventBuf),
&ulBytesNeeded, (ULONG)atol (argv[4]));
if (lusRc) { /* WaitEvent request successful =/
if (ulBytesNeeded <= sizeof(cEventBuf)) {
parse_and_print_get ((HWMCA_DATATYPE_P)cEventBuf);
} else {
printf("Event buffer not Targe enough!\n");
} /* endif */
} else {
printf("Error in HwmcaWaitEvent call return code = %1d\n",usRc);
} /% endif =/
} /% endwhile x/
break;
case 6: /* Build Id request */
pszAttribute = pszGroupName = pszObjectName = (PSZ)NULL;
switch (argc) {
case 7:
if (strlen(argv[6])) {
pszObjectName = argv[6];
} /% endif =/
case 6:
if (strlen(argv[5])) {
pszGroupName = argv[5];
} /* endif */
case 5:
if (strlen(argv[4])) {
pszAttribute = argv[4];
} /* endif */
break;
default:
break;
} /% endswitch */
usRc = HwmcaBuildId(sz0ID,argv[3],pszAttribute,pszGroupName,pszObjectName);

if (lusRc) {
printf("HwmcaBuildId build object identifier %s.\n",sz0ID);
ullLength = HWMCA_DATATYPE_SIZE;

pHwmcaDataType = (HWMCA_DATATYPE_P)NULL;

memset (&tHwmcaDataType, '\0' ,HWMCA DATATYPE_SIZE);

usRc = HwmcaGet (&tHwmcalnitialize,sz0ID,&tHwmcaDataType,
ulLength,&ulBytesNeeded, (ULONG)HWMCAAPI_TIMEOUT)

if ('usRc) { /* Data returned from HwmcaGet */

68 Application Programming Interfaces

/* Need a larger buffer for the Get request */
if (ulBytesNeeded > ullLength) {
pHwmcaDataType = (HWMCA DATATYPE P) (malloc(ulBytesNeeded));
if (pHwmcaDataType) {
memset (pHwmcaDataType, '\0',ulBytesNeeded);
uTLength = ulBytesNeeded;
usRc = HwmcaGet (&tHwmcalnitialize,sz0ID,pHwmcaDataType,
ullength,&u1BytesNeeded, (ULONG)HWMCAAPI TIMEOUT);
if (lusRc) { /* Get request successful =*/
/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS_SUFFIX)) {
parse_and_print_get_group_contents(pHwmcaDataType) ;
} else {
parse_and_print_get(pHwmcaDataType);
} /* endif =/
free(pHwmcaDataType) ;
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /% endif =/

} else {
printf("Error in allocating %1d bytes for an HwmcaGet call",
ulBytesNeeded) ;
} /x endif */
} else {

/* Check if it is a Group contents Get %/
if (strstr(argv[3],HWMCA_GROUP_CONTENTS SUFFIX)) {
parse_and_print_get_group_contents(&tHwmcaDataType);
} else {
parse_and print_get(&tHwmcaDataType);
} /% endif =/
} /% endif =/
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /% endif =/
} else {
printf("Error in HwmcaBuildId call return code = %1d\n",usRc);
} /% endif %/
break;

Chapter 3. Console application APIs

69

case 7: /x Build Attribute Id request */
usRc = HwmcaBuildAttributelId(szOID,argv[3],argv[4]);

if (lusRc) {
printf("HwmcaBuildAttributeld build object identifier %s.\n",sz0ID);
ullength = HWMCA_DATATYPE_SIZE;

pHwmcaDataType = (HWMCA DATATYPE_P)NULL;
memset (&tHwmcaDataType, '\0' ,HWMCA DATATYPE_SIZE);
usRc = HwmcaGet (&tHwmcalnitialize,sz0ID,&tHwmcaDataType,
ullLength,&ulBytesNeeded, (ULONG) HWMCAAPI_TIMEOUT);
if ('usRc) { /* Data returned from HwmcaGet */
/* Need a larger buffer for the Get request =/
if (ulBytesNeeded > ulLength) {
pHwmcaDataType = (HWMCA_DATATYPE_P) (malloc(ulBytesNeeded));
if (pHwmcaDataType) {
memset (pHwmcaDataType, '\0',ulBytesNeeded) ;
ullLength = ulBytesNeeded;
usRc = HwmcaGet (&tHwmcalnitialize,sz0ID,pHwmcaDataType,
ullength,&u1BytesNeeded, (ULONG) HWMCAAPI TIMEOUT);
if (lusRc) { /* Get request successful */
/* Check if it is a Group contents Get =/
if (strstr(argv[3],HWMCA GROUP_CONTENTS SUFFIX)) {
parse_and_print_get group_contents(pHwmcaDataType);
} else {
parse_and print_get(pHwmcaDataType);
} /% endif x/
free(pHwmcaDataType) ;
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /* endif =/

} else {
printf("Error in allocating %1d bytes for an HwmcaGet call",
ulBytesNeeded) ;
} /x endif */
} else {

/* Check if it is a Group contents Get */
if (strstr(argv[3],HWMCA_GROUP_CONTENTS SUFFIX)) {
parse_and_print_get_group_contents(&tHwmcaDataType);
} else {
parse_and_print_get(&tHwmcaDataType);
} /x endif =/
} /% endif =/
} else {
printf("Error in HwmcaGet call return code = %1d\n",usRc);
} /* endif */
} else {
printf("Error in HwmcaBuildId call return code = %1d\n",usRc);
} /% endif =/
break;

70 Application Programming Interfaces

default:
break;
} /% endswitch */
usRc = HwmcaTerminate(&tHwmcalnitialize, (ULONG)HWMCAAPI_TIMEOUT);
if (lusRc) { /* Terminate with HWMCA API server successful =/
printf("HwmcaTerminate socket = %1d\n",
tHwmcalnitialize.protocol.snmp.iAgentSocket);
printf("HwmcaTerminate agent Internet address = %x\n",
tHwmcalnitialize.protocol.snmp.ulInetAddr);
} else {
printf("Error in HwmcaTerminate call return code = %1d\n",usRc);
} /% endif x/
} else {
printf("Error in Hwmcalnitialize call return code = %1d\n",usRc);
} /% endif x/
} /x endif */
} else {
usfContinue = FALSE;
} /% endif =/
if (lusfContinue) {

Chapter 3. Console application APIs

71

printf("**\n");

printf("**x Program requires the following parameters: *xxx\n") ;
printf("*** xkx\n");
printf("xx= Type of request: (use 1 - 7 as the parameter #¥*\n");
printf("xxx for the type of request) wkx\n");
printf("xxx 1 - Get request xxx\n") 3
printf("xx* 2 - Get-Next request *xx\n") ;
printf("xxx 3 - Set request xkx\n");
printf("xx* 4 - Command request *xx\n") ;
printf("xxx 5 - Wait Event request xkx\n");
printf("xxx 6 - Build Id request xxx\n") 3
printf("xxx 7 - Build Attribute Id request xkx\n");
printf("xx= =kx\n");
printf("xx* Internet address of the Console Application ***\n");
printf("xxx 9.130.1.133 *xxx\n") ;
printf("xxx *xxx\n") ;
printf("xxx Request specific parameters: xxx\n") ;
printf("xx* For a Get or Get-Next request: ***\n") ;
printf("xxx Object ID (1.3.6.1.etc) xkx\n");
printf("xxx xkx\n");
printf("xx* For a Set request: *xx\n") ;
printf("xxx Object ID (1.3.6.1.etc) *xxx\n") ;
printf("*x= Set data type (2-integer,4-string,etc) =*x*\n");
printf("xxx Set data xkx\n");
printf("*x= =kx\n");
printf("xxx For a Command request: xkx\n");
printf("xxx Target Object ID (1.3.6.1.etc) xkx\n");
printf("xxx Command Object ID (1.3.6.1.etc) xxx\n") ;
printf("xxx xkx\n");
printf("xxx For a Wait Event request: xxx\n") ;
printf("xxx Event mask xkx\n");
printf("xx= Timeout value in milliseconds *xxx\n") ;
printf("xxx (-1 --> forever) *xxx\n") ;
printf("xxx =kx\n");
printf("xxx For a Build Id request: *xxx\n") ;
printf("xxx Object ID Prefix (1.3.6.1.etc) xkx\n");
printf("*x= Attribute suffix (optional) *xxx\n") ;
printf("xxx Group name (optional) wkx\n");
printf("xx= Object name (optional) *xxx\n") ;
printf("xxx *xxx\n") ;
printf("xxx For a Build Attribute Id request: =kx\n");
printf("xxx Object ID (1.3.6.1.etc) xxx\n") ;
printf("xxx Attribute suffix xkx\n");

Printf (M axsmsors ks sk koo xkok s Fk Kk xrrhhhhhhhkkrhhh kK Kk xkxxkxekxERx\n") 3

} /* endif =/

} /% end main */

72 Application Programming Interfaces

VOID parse_and_print_get(HWMCA _DATATYPE P pHwmcaDataType)

{
HWMCA_DATATYPE_P plLoopHwmcaDataType;

pLoopHwmcaDataType = pHwmcaDataType;
while (pLoopHwmcaDataType) {
switch (pLoopHwmcaDataType->ucType) {
case HWMCA_TYPE_SEQUENCE:
break;
case HWMCA TYPE_INTEGER:
printf("HWMCA_TYPE_INTEGER returned size = %d and pData = %d\n",
pLoopHwmcaDataType->ulLength,* ((PINT) (pLoopHwmcaDataType->pData)));
break;
case HWMCA_TYPE_OCTETSTRING:
printf("HWMCA_TYPE_OCTETSTRING returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ullength,plLoopHwmcaDataType->pData);
break;
case HWMCA_TYPE_NULL:
printf("HWMCA_TYPE_NULL returned size = %d\n",pLoopHwmcaDataType->ullength);
break;
case HWMCA_TYPE_OBJECTID:
printf("HWMCA_TYPE_OBJECTID returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ulLength,pLoopHwmcaDataType->pData);
break;
case HWMCA_TYPE_IPADDRESS:
printf("HWMCA_TYPE_IPADDRESS returned size = %d and pData = %x\n",
pLoopHwmcaDataType->ulLength,* ((PINT) (pLoopHwmcaDataType->pData)));

break;

default:
printf("UNKNOWN Data type returned = %d\n",pLoopHwmcaDataType->ucType);
break;

} /* endswitch */
pLoopHwmcaDataType = pLoopHwmcaDataType->pNext;
} /* endwhile */

} /* end of parse_and print_get */

Chapter 3. Console application APIs

73

VOID parse_and_print_get group_contents(HWMCA DATATYPE P pHwmcaDataType)
{

PSz pszGroupContents;

PUCHAR pBlank;

HWMCA_DATATYPE_P pLoopHwmcaDataType;

pLoopHwmcaDataType = pHwmcaDataType;
while (pLoopHwmcaDataType) {
switch (pLoopHwmcaDataType->ucType) {
case HWMCA TYPE_OBJECTID:
printf("HWMCA_TYPE_OBJECTID returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ullLength,pLoopHwmcaDataType->pData);
break;
case HWMCA_TYPE_OCTETSTRING:
printf("HWMCA_TYPE_OCTETSTRING returned size = %d and pData = %s\n",
pLoopHwmcaDataType->ullength,plLoopHwmcaDataType->pData);
pszGroupContents = (PSZ)plLoopHwmcaDataType->pData;
pBlank = pszGroupContents;
pBlank = strchr(pBlank,' ');
while (pBlank) {
*pBlank = '\0';
printf("Group contents Object ID = %s\n",pszGroupContents);
pBlank++;
pszGroupContents = pBlank;
pBlank = strchr(pBlank,' ');
} /* endwhile x/
printf("Group contents Object ID = %s\n",pszGroupContents);
break;
case HWMCA _TYPE_NULL:
printf("HWMCA_TYPE_NULL returned size = %d\n",pLoopHwmcaDataType->ulLength);

break;

default:
printf("UNKNOWN Data type returned = %d\n",plLoopHwmcaDataType->ucType);
break;

} /* endswitch */
pLoopHwmcaDataType = pLoopHwmcaDataType->pNext;
} /* endwhile =/

} /* end of parse_and_print_get_group_contents */

74 Application Programming Interfaces

Chapter 4. Console application managed objects

This chapter contains definitions of the objects the Console application manages. Each object contains the
following:

e Object Type
* Object Name Bindings: Shows the name of the base object that is used in the Management Commands
APL

* Object Attributes: Describes each attribute an object contains and the operations supported against
that attribute. The operations supported are:

Get: Retrieve the current attribute value of an object
Set: The attribute value of an object
It also shows the attribute name of an object (SNMP MIB name) that is used in the management APIs.

Important information about object attributes: Unless otherwise specified in [Appendix E, “Object]
[Attribute Availability,” on page 215)it can be assumed that each object attribute described in this

chapter is valid for any level of object. For any object attribute that is not valid for all levels, [Table 1 on
ﬁ

defines the level of objects required for the attribute.

* Object Relationship: Describes any pertinent relationships the object contains with other objects.

¢ Commands that can be performed on that object: Describes each command that is valid for the object
and also shows the name of the command that is used in the Management Commands API when
requesting a command to be performed on the object. For the SNMP version, the command name is
called the SNMP MIB Name.

* Emitted object asynchronous notifications: Describes the significant notifications an object will emit to
a registered application.

Console application object identifier conventions

All the objects managed by the Console application follow the same object identifier naming scheme. The
naming scheme used by the Console breaks the object identifiers into four distinct portions:

prefix.attribute.group.object

The meanings and options for each of these portions are described in the following pages:

prefix

This portion of the object identifier must be one of the following:

1.3.6.1.4.1.2.6.42.0

An attribute of the Console object or the Console object itself.

1.3.6.1.4.1.2.6.42.1
An attribute of the Defined CPCs group object or the Defined CPCs group object itself.

1.3.6.1.4.1.2.6.42.1.0
An attribute of a Defined CPC object or a Defined CPC object itself.

1.3.6.1.4.1.2.6.42.2
An attribute of the CPC Images group object or the CPC Images group object itself.

1.3.6.1.4.1.2.6.42.2.0
An attribute of a CPC Image object or a CPC Image object itself.

© Copyright IBM Corp. 2000, 2013 75

1.3.6.1.4.1.2.6.42.3

An attribute of a user-defined group object or a user-defined group object itself.

1.3.6.1.4.1.2.6.42.3.0

An attribute of an object contained within a user-defined group object or an object contained within a
user-defined group object itself.

1.3.6.1.4.1.2.6.42.4

A Console application command object.

1.3.6.1.4.1.2.6.42.5

An attribute of a Reset Activation Profile or a Reset Activation Profile object itself.

1.3.6.1.4.1.2.6.42.6

An attribute of an Image Activation Profile or an Image Activation Profile object itself.

1.3.6.1.4.1.2.6.42.7

An attribute of a Load Activation Profile or a Load Activation Profile object itself.

1.3.6.1.4.1.2.6.42.8

An attribute of a Group Activation Profile or a Group Activation Profile object itself.

1.3.6.1.4.1.2.6.42.9.0
An attribute of a Capacity Record object or a Capacity Record object itself.

1.3.6.1.4.1.2.6.42.10
An attribute of the Managed z/VM® Virtual Machines group object or the Managed z/VM Virtual
Machines group object itself.

1.3.6.1.4.1.2.6.42.10.0
An attribute of a z/VM Virtual Machine object or a z/VM Virtual Machine object itself.

attribute

This portion of the object identifier is used when specifying an object identifier for an attribute of an
object. It is optional and when not specified results in an object identifier for the object itself.

group

This portion of the object identifier is used to uniquely specify which user-defined group this object
identifier pertains to. It is optional and should only be used for the following object identifiers:

¢ User-defined groups

* User-defined group attributes

* Objects contained within user-defined groups

* Attributes of objects contained within user-defined groups

* Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects (in this case the
group value is used to identify the CPC object that the activation profile pertains to)

 Attributes of Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects (in
this case the group value is used to identify the CPC object that the activation profile attribute pertains
to).

This value is generated using the name attribute of the group object.

object

This portion of the object identifier is used to uniquely specify which object within a group this object
identifier pertains to. It is optional and should only be used for the following object identifiers:

76 Application Programming Interfaces

* Objects contained within a group
* Attributes of objects contained within a group
* Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects

 Attributes of Reset Activation Profile, Image Activation Profile, and Load Activation Profile objects.

This value is generated using the name attribute of the object.

Console application object

Console application name bindings

Console object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.x.x

Where x.x equals the attribute identifier for the object.

Console attributes

Name

Get:

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.1.0

SNA address

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned contains the
SNA address in the form Netld.Name)

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.16.0

Group contents

Get: Null terminated collection of blank separated object identifier strings.

¢ Data type(s) returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE _NULL
¢ Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1

¢ CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2

e CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.*

* CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.*

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.23.0

Version

Get: The version number for the console.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.151.0

Internet Protocol (IP) addresses

Get: A null terminated list of blank separated IP addresses being used by the console.
¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.161.0

Engineering Change (EC)/Microcode Level (MCL)
Get: An XML string that describes the EC and MCL levels for the console.
* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

Chapter 4. Console application managed objects 77

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.0.162.0

Console application commands

Hardware message refresh
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.11 (HWMCA_HW_MESSAGE_REFRESH_COMMAND)

Hardware message delete
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.13 (HWMCA_HW_MESSAGE_DELETE_COMMAND)

Shutdown/Restart
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.22 (HWMCA_SHUTDOWN_RESTART_COMMAND)

Console application notifications
Security log event (HWMCA_EVENT_SECURITY_EVENT)

An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the security log.
An HWMCA_TYPE_OCTETSTRING that specifies the text of the security log.

Console application started (HWMCA_EVENT_STARTED)

This event has no additional data.

Console application ended (HWMCA_EVENT_ENDED)
Used to notify the application that the Console application is ending.

The additional data for this event consists of the following object identifier/value pairs:

1.

4.

An HWMCA_TYPE_INTEGER that specifies the reason for the event. The possible values are:

« HWMCA_ENDED_USER - the event was initiated by a user,

* HWMCA_ENDED_AUTOMATION - the event was initiated by automation, or

« HWMCA_ENDED_OTHER - the event was initiated by the Console application itself (for example,
recovery action, change management, etc.)

An HWMCA_TYPE_OCTETSTRING that specifies the name of the Console application component

that caused the event.

An HWMCA_TYPE_INTEGER that specifies the shutdown type for the event. The possible values are:

¢« HWMCA_SHUTDOWN_CONSOLE - the console has been shut down and will take manual
intervention to be restarted,

* HWMCA_RESTART_APPLICATION - the console application has been stopped and will
automatically be restarted, or

« HWMCA_RESTART_CONSOLE - the console has been stopped and will automatically be restarted.
An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to.

Message (HWMCA_EVENT_MESSAGE)

An HWMCA_TYPE_INTEGER that specifies that the message is a Console or Optical Network
message (HWMCA_HARDWARE_MESSAGE).

An HWMCA_TYPE_OCTETSTRING that specifies a description of the new or refreshed Console or
Optical Network message.

An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refresh message.

An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated
with the object that generated the new or refresh message.

78 Application Programming Interfaces

Message deletion (HWMCA_EVENT_HARDWARE_MESSAGE_DELETE)

* An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a Console or Optical
Network message (HWMCA_HARDWARE_MESSAGE).

* An HWMCA_TYPE_OCTETSTRING that specifies the message text of the Console or Optical Network
message being deleted.

* An HWMCA_TYPE_INTEGER which is always HWMCA_FALSE for this event.
* An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the message being deleted.

* An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated
with the object for which the message is being deleted.

Group

Group name bindings

Defined CPCs group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1

CPC images group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2

CPC user group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3

CPC images user group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3

Managed z/VM virtual machines group object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10

Group attributes

Name

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

* Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.1.0

¢ CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.1.0

¢ CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.1.0.*

e CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.1.0.*

* Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.1.0.%

Status error
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Contains one or more objects that are in a state which is not an acceptable status.
HWMCA_FALSE
All objects contained within the group are in an acceptable status state.
* Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.7.0
* CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.7.0
* CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.7.0.*
* CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.7.0.*
* Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.7.0.%

Chapter 4. Console application managed objects 79

Busy
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object in a busy state (currently performing a task).
HWMCA_FALSE
Object not in a busy state.
* Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.8.0
* CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.8.0
¢ CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.8.0.*
* CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.8.0.*
* Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.8.0.%

Object type
Get: This returns the type of object the object identifier represents.
* Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following values:
- HWMCA_CPC_GROUP
- HWMCA_CPC_IMAGE_GROUP
HWMCA_CPC_USER_GROUP
HWMCA_CPC_IMAGE_USER_GROUP
- HWMCA_VM_GROUP
* Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.22.0
* CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.22.0
* CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.22.0.*
e CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.22.0.*
* Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.22.0.*

Contents

Get: Null terminated collection of blank separated object identifier strings.

* Data type(s) returned on Get: HWMCA_TYPE_OCTETSTRING

* Defined CPCs Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.23.0

¢ CPC Images Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.23.0

e CPC User Group Object SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.23.0.*

* CPC Images User Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.3.23.0.*

* Managed z/VM Virtual Machines Group SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.23.0.*

Note: In some cases the size of the data associated with this attribute is larger than what many
applications can traditionally handle. In this situation the same information can be determined by issuing
a series of GetNext requests to build the collection of object identifier strings.

Group commands
H/W (CPC) group

Commands that can be performed on this group are the same as the commands listed in the Defined
CPC object’s definition in [“Defined CPC commands” on page 90 except for the
HWMCA_HW_MESSAGE_REFRESH_COMMAND and HWMCA_HW_MESSAGE_DELETE_COMMAND
commands.

CPC image group

Commands that can be performed on this group are the same as the commands listed in CPC image
object’s definition in [“CPC image commands” on page 106 However, the send operating system
1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND) listed in this chapter is not valid for sending
to a group.

80 Application Programming Interfaces

CF image group

Commands that can be performed on this group are the same as the commands listed in CF image
object’s definition in|“Coupling facility commands” on page 115/ However, the send operating system
1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND) listed in this chapter is not valid for sending
to a group.

Group notifications
Object created (HWMCA_EVENT_CREATED)

This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)

This event has no additional data.

Defined CPC

Defined CPC name bindings

CPC object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.x.x.*

Where x.x. equals the attribute identifier for the object and * equals a unique number for that specific
instance of the CPC Object.

Defined CPC attributes

Name

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.1.0.*

Status error
Get:
¢ Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object is in a state which is not an acceptable status.
HWMCA_FALSE
Object is in an acceptable status state.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.7.0.%

Busy
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object is in a busy state (currently performing a task).
HWMCA_FALSE
Object is not in a busy state.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.8.0.*

Message indicator
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object has a hardware message.

Chapter 4. Console application managed objects 81

HWMCA_FALSE
Object does not have a hardware message.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.9.0.%

Status
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:

- HWMCA_STATUS_OPERATING

- HWMCA_STATUS_NOT_OPERATING

- HWMCA_STATUS_NO_POWER

- HWMCA_STATUS_EXCEPTIONS

- HWMCA_STATUS_STATUS_CHECK

- HWMCA_STATUS_SERVICE

- HWMCA_STATUS_LINKNOTACTIVE

- HWMCA_STATUS_POWERSAVE

- HWMCA_STATUS_SERVICE_REQ
HWMCA_STATUS_DEGRADED

. SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.10.0.%

Acceptable status

Get/Set:

* Data type returned on Get: HWMCA_TYPE_INTEGER
* Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:
- HWMCA_STATUS_OPERATING
- HWMCA_STATUS_NOT_OPERATING
- HWMCA_STATUS_NO_POWER
- HWMCA_STATUS_EXCEPTIONS
- HWMCA_STATUS_STATUS_CHECK
- HWMCA_STATUS_SERVICE
- HWMCA_STATUS_LINKNOTACTIVE
- HWMCA_STATUS_POWERSAVE
- HWMCA_STATUS_SERVICE_REQ
- HWMCA_STATUS_DEGRADED
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.11.0.%

IML mode
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
- HWMCA_IML_ESA390_MODE
- HWMCA_IML_LPAR_MODE
- HWMCA_IML_ESA390TPF_MODE
- HWMCA_IML_LINUX_MODE
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.12.0.*

Activation profile name

Get/Set (Reset or Load profile):

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A maximum length of 17 bytes is allowed for the activation profile name, including the null
terminator.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.13.0.*

82 Application Programming Interfaces

Last used activation profile

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE _NULL
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.14.0.%

Internet address

Get:

* Data type returned on Get: HWMCA_TYPE_IPADDRESS
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.15.0.*

SNA address
Get:

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned will contain

the SNA address in the form Netld.Name.)
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.16.0.%

Computer (machine) model

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.17.0.%

Computer (machine) type

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.18.0.*

Computer (machine) serial

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.19.0.%

CPC serial number

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.20.0.*

CPC identifier

Get: Node descriptor identifier calculated by using location within computer (machine).
¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.21.0.*

Object type

Get: This returns the type of object the object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_CPC_OBJECT

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.22.0.*

List of reset activation profiles

Get: This returns a null terminated collection of blank separated object identifiers for each Reset
Activation profile.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.24.0.*

List of image activation profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Image

Activation profile.
 Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Chapter 4. Console application managed objects

83

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.25.0.*

List of load activation profiles

Get: This returns a null terminated collection of blank separated object identifiers for each Load
Activation profile.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.26.0.*

CBU installed
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
CBU is installed.
HWMCA_FALSE
CBU is not installed.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.32.0.%

CBU activated
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
CBU is activated.
HWMCA_FALSE
CBU is not activated.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.33.0.%

CBU activation date

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.34.0.*

CBU expiration date

Get:

« Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
« SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.35.0.*

Number of CBU tests left

Get:

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.36.0.*

Real CBU activation available
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Real CBU is available.
HWMCA_FALSE
Real CBU is not available.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.37.0.%

Reserve ID
Note: This attribute is available only on a Support Element console.

Get:

84 Application Programming Interfaces

¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING (The OCTET string returned contains the
name of the application that currently holds the reserve. A zero length string implies that no
application holds the reserve.)

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.44.0.*

Service required indicator
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Service Required indicator is on.
HWMCA_FALSE
Service Required indicator is not on.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.46.0.*

Degraded indicator
Get:
¢ Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_NOT_DEGRADED
- HWMCA_DEGRADED_MEM
- HWMCA_DEGRADED_MBA
- HWMCA_DEGRADED_NODE
- HWMCA_DEGRADED_RING
- HWMCA_DEGRADED_CBU
- HWMCA_DEGRADED_MRU
- HWMCA_DEGRADED_AMBIENT
- HWMCA_DEGRADED_MRU_IML
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.47.0.*

CBU enabled
Get:

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
CBU is enabled.
HWMCA_FALSE
CBU is not enabled.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.48.0.*

List of cluster members
Get: This returns a null terminated collection of blank separated SNA addresses for all other Support
Elements considered to be within the same cluster.

Note: This attribute is available only when targeting a Support Element.
* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.50.0.*

Processor running time type
Get/Set: Defines whether the processor running time is dynamically determined by the system or set to a
constant value for the Defined CPC object.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

0 (HWMCA_DETERMINED_SYSTEM)
The processor running is dynamically determined by the system.

1 (HWMCA_DETERMINED_USER)
The processor running time is set to a constant value.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.78.0.*

Chapter 4. Console application managed objects 85

Processor running time
Get/Set: Defines the amount of continuous time allowed for logical processors to perform jobs on shared
processors for the Defined CPC object.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
A value 1 - 100 for the user-defined processor running time.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER).

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.79.0.*

End timeslice if CPC image enters a wait state
Get/Set: Defines whether CPC Images lose their share of running time when they enter a wait state.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that a CPC Image should lose its share of running time when it enters a wait state.

HWMCA_FALSE
Indicates that a CPC Image should not lose its share of running time when it enters a wait
state.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER).

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.80.0.*

On/Off Capacity on Demand (On/Off CoD) installed
Get: Defines whether On/Off Capacity on Demand is installed for the Defined CPC object.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is installed.

HWMCA_FALSE
On/Off CoD is not installed.

Note: The attribute On/Off Capacity on Demand (On/Off CoD) Installed and attribute On/Off
Capacity on Demand (On/Off CoD) Activated always have the same value, either
HWMCA_TRUE or HWMCA_FALSE.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.87.0.*

On/Off Capacity on Demand (On/Off CoD) activated
Get: Defines whether On/Off Capacity on Demand is currently activated for the Defined CPC object.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is activated.

HWMCA_FALSE
On/Off CoD is not activated

Note: The attribute On/Off Capacity on Demand (On/Off CoD) Installed and attribute On/Off
Capacity on Demand (On/Off CoD) Activated always have the same value, either
HWMCA_TRUE or HWMCA _FALSE.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.88.0.%

86 Application Programming Interfaces

On/Off Capacity on Demand (On/Off CoD) enabled
Get: Defines whether On/Off Capacity on Demand is enabled for the Defined CPC object.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
On/Off CoD is enabled.

HWMCA_FALSE
On/Off CoD is not enabled.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.89.0.*

On/Off Capacity on Demand (On/Off CoD) activation date
Get: Defines the time stamp for when On/Off CoD was activated for the Defined CPC object.

* Data type for Get: HWMCA_TYPE_OCTETSTRING

A time stamp string describing when On/Off CoD was activated or an empty string if On/Off CoD is
not activated.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.90.0.*

List of group profiles
Get: This returns a null terminated collection of blank separated object identifiers for each Group profile.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.91.0.*

Temporary capacity records
Get: A blank separated list of SNMP object identifiers for the installed temporary capacity records.

¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.119.0.%

Permanent software model
Get: The software model based on the permanent processors.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.120.0.*

Permanent plus billable software model
Get: The software model based on the permanent plus billable processors.

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.121.0.*

Permanent plus all temporary software model
Get: The software model based on the permanent plus all temporary processors.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.122.0.*

Permanent MSU

Get: The MSU value associated with the software model based on the permanent processors.
¢ Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.123.0.*

Permanent plus billable MSU

Get: The MSU value associated with the software model based on the permanent plus billable processors.
* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.124.0.*

Chapter 4. Console application managed objects 87

Permanent plus all temporary MSU
Get: The MSU value associated with the software model based on the permanent plus all temporary
processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.125.0.*

General purpose processors
Get: The count of general purpose processors.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.126.0.*

Service assist processors
Get: The count of service assist processors.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.127.0.*

Application Assist Processor (AAP) processors
Get: The count of Application Assist Processor (AAP) processors.

e Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.128.0.*

Integrated Facility for Linux (IFL) processors
Get: The count of Integrated Facility for Linux (IFL) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.129.0.*

Internal Coupling Facility (ICF) processors
Get: The count of Internal Coupling Facility (ICF) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.130.0.*

Integrated Information Processors (zlIP) processors
Get: The count of Integrated Information Processors (zIIP) processors.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.131.0.*

Defective processors
Get: The count of defective processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.132.0.*

Spare processors
Get: The count of spare processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.133.0.*

Pending processors
Get: The count of processors pending activation.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.134.0.*

88 Application Programming Interfaces

Temporary capacity change allowed

Get: This value is used to determine if API applications are allowed to make changes to temporary
capacity.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
API applications are allowed to perform temporary capacity changes.

HWMCA_FALSE
API applications are not allowed to perform temporary capacity changes.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.149.0.*

Version
Get: The version number for the Defined CPC.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.151.0.*

Internet Protocol (IP) addresses
Get: A null terminated list of blank separated IP addresses being used by the defined CPC object.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.161.0

Engineering Change (EC)/Microcode Level (MCL)
Get: An XML string that describes the EC and MCL levels for the defined CPC object. For more
information, see [Appendix F, “XML descriptions,” on page 219

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.162.0

Automatic switch enabled
Get: This value is used to determine if automatic switching between primary and alternate Support
Elements is enabled for the Defined CPC object.
* Data type for Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Automatic switching is enabled.
HWMCA_FALSE
Automatic switching is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.163.0.*

Server Time Protocol (STP) configuration

Get: An XML string that describes the STP configuration for the defined CPC object. For more
information, see [Appendix F, “XML descriptions,” on page 219|

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.165.0

Pending General Purpose Processors
Get: The count of pending general purpose processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.175.0.*

Pending Service Assist Processors
Get: The count of pending service assist processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.176.0.*

Chapter 4. Console application managed objects

89

Pending Application Assist Processor (AAP) Processors
Get: The count of pending Application Assist Processor (AAP) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.177.0.*

Pending Integrated Facility for Linux (IFL) Processors
Get: The count of pending Integrated Facility for Linux (IFL) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.178.0.*

Pending Internal Coupling Facility (ICF) Processors
Get: The count of pending Internal Coupling Facility (ICF) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.179.0.*

Pending Integrated Information Processors (zlIP) Processors
Get: The count of pending Integrated Information Processors (zIIP) processors.

* Data type returned on Get: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.1.0.180.0.*

Defined CPC relationships
Cluster (String)

A CPC is a member of a cluster. There are one or more CPCs per cluster.

Support Element

A CPC has a one-to-one relationship with a Support Element (provider of services).

CF/CPC image

A CPC contains one or more images. This is determined by the activation reset profile.

Defined CPC commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Hardware message refresh
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.11 (HWMCA_HW_MESSAGE_REFRESH_COMMAND)

Hardware message delete
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.13 (HWMCA_HW_MESSAGE_DELETE_COMMAND)

Activate CBU
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.14 (HWMCA_ACTIVATE_CBU_COMMAND)

Undo CBU
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.15 (HWMCA_UNDO_CBU_COMMAND)

Import profiles
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.16 (HWMCA_IMPORT_PROFILE_COMMAND)

90 Application Programming Interfaces

Export profiles
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.17 (HWMCA_EXPORT_PROFILE_COMMAND)

Reserve
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.18 (HWMCA_RESERVE_COMMAND)

Activate On/Off Capacity on Demand (On/Off CoD)
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.23 (HWMCA_ACTIVATE_OOCOD_COMMAND)

Undo On/Off Capacity on Demand (On/Off CoD)
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.24 (HWMCA_UNDO_OOCOD_COMMAND)

Add temporary capacity
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.25 (HWMCA_ADD_CAPACITY_COMMAND)

Remove temporary capacity
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.26 (HWMCA_REMOVE_CAPACITY_COMMAND)

Swap Current Time Server
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.27(HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND)

Set STP configuration
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.428(HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND)

Change STP-only CTN
SNMP MIB Name:
1.3.6.1.4.1.2.6.42.429(HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_COMMAND)

Join STP-only CTN
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.30(HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND)

Leave STP-only CTN
SNMP MIB Name:
1.3.6.1.4.1.2.6.42.431(HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_COMMAND)

Defined CPC notifications

Message (HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For hardware messages:

* An HWMCA_TYPE_OCTETSTRING that specifies a description of the new or refreshed hardware
message.

* An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

* An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the new or refresh message.

* An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated
with the object that generated the new or refresh message.

Message deletion (HWMCA_EVENT_HARDWARE_MESSAGE_DELETE)

* An HWMCA_TYPE_INTEGER that specifies that the message being deleted is a CPC-related hardware
message (HWMCA_HARDWARE_MESSAGE).

* An HWMCA_TYPE_OCTETSTRING that specifies the message text of the hardware message being
deleted.

Chapter 4. Console application managed objects 91

* An HWMCA_TYPE_INTEGER which is always HWMCA_FALSE for this event.
* An HWMCA_TYPE_OCTETSTRING that specifies the time stamp of the message being deleted.

* An HWMCA_TYPE_OCTETSTRING that specifies the name(s) of the CPC Image object(s) associated
with the object for which the message is being deleted.

Status change (HWMCA_EVENT_STATUS_CHANGE)
* An HWMCA_TYPE_INTEGER that specifies the new status value

* An HWMCA_TYPE_INTEGER that specifies the old status value.

Object’s name change (HWMCA_EVENT_NAME_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new object name

¢ An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object’s activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name
* An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.

Object created (HWMCA_EVENT_CREATED)

This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)

This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)

* An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Capacity change (HWMCA_EVENT_CAPACITY_CHANGE)
* An HWMCA_TYPE_INTEGER that specifies the type of capacity change that occurred.

* An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

Capacity record change (HWMCA_EVENT_CAPACITY_RECORD_CHANGE)
* An HWMCA_TYPE_INTEGER that specifies the type of capacity record change that occurred.
* An HWMCA_TYPE_OCTETSTRING for the temporary capacity record that has changed.

* An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a Defined CPC object).

CPC image

CPC image name bindings

Image Object Identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.x.x.*

Where x.x. equals the attribute identifier for the object and * equals a unique number for that specific
instance of the CPC Image Object.

CPC image attributes

Name
Get:
* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

92 Application Programming Interfaces

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.1.0.%

Parent’s name

Get (CPC’s logical name):

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.2.0.*

Operating system name

Get: Name of Operating System running in image, if known.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.3.0.*

Operating system type

Get: Type of Operating System running in image, if known.

¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE _NULL
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.4.0.*

Operating system level

Get: Level of Operating System running in image, if known.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.5.0.*

Sysplex name

Get: Applicable only for MVS", if known.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.6.0.%

Status error
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object is in a state which is not an acceptable status.
HWMCA_FALSE
Object is in an acceptable status state.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.7.0.%

Busy
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object in a busy state (currently performing a task)
HWMCA _FALSE
Object not in a busy state.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.8.0.*

Message indicator
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object has an operating system message.
HWMCA_FALSE
Object does not have an operating system message.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.9.0.*

Status
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects

93

One of the following bit values will be set to on:

- HWMCA_STATUS_OPERATING

- HWMCA_STATUS_NOT_OPERATING

- HWMCA_STATUS_NOT_ACTIVATED

- HWMCA_STATUS_EXCEPTIONS

- HWMCA_STATUS_STATUS_CHECK
HWMCA_STATUS_POWERSAVE

. SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.10.0.*

Acceptable status

Get/Set:

* Data type returned on Get: HWMCA_TYPE_INTEGER
* Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:

- HWMCA_STATUS_OPERATING

- HWMCA_STATUS_NOT_OPERATING

- HWMCA_STATUS_NOT_ACTIVATED

- HWMCA_STATUS_EXCEPTIONS

- HWMCA_STATUS_STATUS_CHECK
HWMCA_STATUS_POWERSAVE

. SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.11.0.%

IML/partition activation mode
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:
- HWMCA_IML_ESA390_MODE
- HWMCA_IML_S370_MODE
- HWMCA_IML_ESA390TPF_MODE
- HWMCA_IML_CF_PROD_MODE
- HWMCA_IML_LINUX_MODE
- HWMCA_IML_ZVM_MODE
- HWMCA_IML_ZAWARE_MODE
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.12.0.*

Activation profile name

Get/Set (Image or Load profile):

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A maximum length of 17 bytes is allowed for the activation profile name, including the null
terminator.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.13.0.*

Last used activation profile

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE_NULL
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.14.0.*

Object type

Get: This returns the type of object the object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_CPC_IMAGE_OBJECT

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.22.0.*

94 Application Programming Interfaces

Initial processing weight
Get/Set: The relative amount of shared general purpose processor resources initially allocated to the CPC
Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1-999 Represents the relative amount of shared general purpose processor resources initially allocated
to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared general purpose processor resources
allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.30.0.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight for general purpose processors is a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial general purpose processor processing weight for the CPC Image object
is capped. It represents the logical partition’s maximum share of general purpose processor
resources, regardless of the availability of excess general purpose processor resources.

HWMCA_FALSE (0)
Indicates that the initial general purpose processor processing weight for the CPC Image is not
capped. It represents the share of general purpose processor resources guaranteed to a logical
partition when all general purpose processor resources are in use. Otherwise, when excess
general purpose processor resources are available, the logical partition can use them if
necessary.

Note: The initial general purpose processor processing weight capped attribute cannot be set and the
value returned for a Get request is always HWMCA_FALSE when the CPC Image does not represent a
logical partition or the CPC Image does not represent a logical partition with at least one not dedicated
general purpose processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.31.0.*

Minimum processing weight
Get/Set: The minimum relative amount of shared general purpose processor resources allocated to the
CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1-999 Represents the minimum relative amount of shared general purpose processor resources
allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 95

A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared general purpose processor resources allocated to the CPC Image object. A
value of zero can also be specified to indicate that there is no minimum value for the processing
weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.38.0.*

Maximum processing weight
Get/Set: The maximum relative amount of shared general purpose processor resources allocated to the
CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1-999 Represents the maximum relative amount of shared general purpose processor resources
allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared general purpose processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated general purpose processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.39.0.*

Current processing weight
Get: The relative amount of shared general purpose processor resources currently allocated to the CPC
Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated general purpose processor.

1-999 Represents the relative amount of shared general purpose processor resources currently
allocated to the CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.41.0.*

Current processing weight capped
Get: Whether or not the current general purpose processing weight is a limit or a target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current general purpose processing weight for the CPC Image object is
capped. It represents the logical partition’s maximum share of resources, regardless of the
availability of excess processor resources.

HWMCA_FALSE
Indicates that the current general purpose processing weight for the CPC Image is not capped.
It represents the share of resources guaranteed to a logical partition when all processor
resources are in use. Otherwise, when excess processor resources are available, the logical
partition can use them if necessary.

96 Application Programming Interfaces

Note: The current general purpose processing weight capped attribute cannot be set and the value
returned for a get request is always HWMCA_FALSE when the CPC Image does not represent a logical
partition or the CPC Image does not represent a logical partition with at least one not dedicated
general purpose processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.42.0.*

Workload Manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.
This attribute and the various capping attributes are mutually exclusive and cannot be enabled at the
same time. Therefore in order to enable this attribute it may be necessary to first disable any capping
attribute that is currently enabled. It is also possible to use a value of -1 when setting this attribute,
which will result in this attribute being enabled and all capping attributes being disabled automatically
in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.40.0.%

Defined capacity

Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 No defined capacity is specified for this logical partition.
1 - nnnn

Represents the amount of defined capacity specified for this logical partition.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.43.0.*

Cluster name

Get: LPAR cluster name.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE _NULL
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.50.0*%

Partition identifier

Get: The partition identifier for the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.51.0*

Initial Application Assist Processor processing weight
Get/Set: The relative amount of shared Application Assist Processor (AAP) processor resources initially
allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.

Chapter 4. Console application managed objects 97

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared Application Assist Processor (AAP)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.60.0.%

Initial Application Assist Processor processing weight capped
Get/Set: Whether or not the initial processing weight for Application Assist Processor (AAP) processors is
a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Application
Assist Processor (AAP) processor resources, regardless of the availability of excess Application
Assist Processor (AAP) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image is not capped. It represents the share of Application Assist Processor (AAP)
processor resources guaranteed to a logical partition when all Application Assist Processor
(AAP) processor resources are in use. Otherwise, when excess Application Assist Processor
(AAP) processor resources are available, the logical partition can use them if necessary.

Note: The initial Application Assist Processor (AAP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it may be necessary to first disable
the Workload manager enabled attribute. It is also possible to use a value of -1 when setting this
attribute, which will result in this attribute being enabled and the Workload manager enabled attribute
being disabled automatically in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.61.0.%

Minimum Application Assist Processor processing weight
Get/Set: The minimum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the minimum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the minimum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no minimum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.62.0.*

98 Application Programming Interfaces

Maximum Application Assist Processor processing weight
Get/Set: The maximum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the maximum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.63.0.*

Current Application Assist Processor processing weight
Get: The current relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the current relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.64.0.*

Current Application Assist Processor processing weight capped
Get: Whether or not the current Application Assist Processor (AAP) processing weight is a limit or a
target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Application Assist Processor (AAP) processing weight for the CPC
Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Application Assist Processor (AAP) processing weight for the CPC
Image is not capped. It represents the share of resources guaranteed to a logical partition when
all processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Application Assist Processor (AAP) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.65.0.*

Initial Integrated Facility for Linux processing weight
Get/Set: The relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 99

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.

¢ Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared Integrated Facility for Linux (IFL)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.66.0.%

Initial Integrated Facility for Linux processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Facility for Linux (IFL) processors is
a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Integrated
Facility for Linux (IFL) processor resources, regardless of the availability of excess Integrated
Facility for Linux (IFL) processor resources.

HWMCA _FALSE (0)
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image is not capped. It represents the share of Integrated Facility for Linux (IFL)
processor resources guaranteed to a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when excess Integrated Facility for Linux (IFL)
processor resources are available, the logical partition can use them if necessary.

Note: The initial Integrated Facility for Linux (IFL) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.67.0.%

Minimum Integrated Facility for Linux processing weight
Get/Set: The minimum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the minimum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the minimum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no minimum value for the processing weight.

100 Application Programming Interfaces

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.68.0.%

Maximum Integrated Facility for Linux processing weight

Get/Set: The maximum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object. The maximum relative amount of shared Integrated Facility
for Linux (IFL) processor resources initially allocated to the CPC Image object.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the maximum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.69.0.*

Current Integrated Facility for Linux processing weight
Get: The current relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the current relative amount of shared Integrated Facility for Linux (IFL) processor
resources initially allocated to the CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.70.0.*

Current Integrated Facility for Linux Processing weight capped
Get: Whether or not the current Integrated Facility for Linux (IFL) processing weight is a limit or a target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Integrated Facility for Linux (IFL) processing weight for the CPC
Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Integrated Facility for Linux (IFL) processing weight for the CPC
Image is not capped. It represents the share of resources guaranteed to a logical partition when
all processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Integrated Facility for Linux (IFL) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.71.0.*

Chapter 4. Console application managed objects 101

Initial Integrated Information Processors processing weight
Get/Set: The relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Information Processors (zIIP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Information Processors (zIIP) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.81.0.*

Initial Integrated Information Processors processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Information Processors (zIIP)
processors is a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image object is capped. It represents the logical partition’s maximum share of
Integrated Information Processors (zIIP) processor resources, regardless of the availability of
excess Integrated Information Processors (zIIP) processor resources.

HWMCA_FALSE (0)
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image is not capped. It represents the share of Integrated Information Processors
(zIIP) processor resources guaranteed to a logical partition when all Integrated Information
Processors (zIIP) processor resources are in use. Otherwise, when excess Integrated Information
Processors (zIIP) processor resources are available, the logical partition can use them if
necessary.

Note: The initial Integrated Information Processors (zIIP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it may be necessary to first disable
the Workload manager enabled attribute. It is also possible to use a value of -1 when setting this
attribute, which will result in this attribute being enabled and the Workload manager enabled attribute
being disabled automatically in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.82.0.*

Minimum Integrated Information Processors processing weight
Get/Set: The minimum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the minimum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

102 Application Programming Interfaces

* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Information

Processors (zIIP) processor resources allocated to the CPC Image object. A value of zero can also be
specified to indicate that there is no minimum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.83.0.*

Maximum Integrated Information Processors Processing Weight
Get/Set: The maximum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the maximum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the maximum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. Note: The setting of this
attribute is only valid for CPC Image objects that represent a logical partition with at least one not
dedicated Integrated Information Processors (zIIP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.84.0.*

Current Integrated Information Processors processing weight
Get: The current relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the current relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.85.0.*

Current Integrated Information Processors processing weight capped
Get: Whether or not the current Integrated Information Processors (zIIP) processing weight is a limit or a
target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Integrated Information Processors (zIIP) processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of resources,
regardless of the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Integrated Information Processors (zIIP) processing weight for the
CPC Image is not capped. It represents the share of resources guaranteed to a logical partition
when all processor resources are in use. Otherwise, when excess processor resources are
available, the logical partition can use them if necessary.

Note: The current Integrated Information Processors (zIIP) processing weight capped attribute cannot
be set and the value returned for a get request is always HWMCA_FALSE when the CPC Image does

Chapter 4. Console application managed objects 103

not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Integrated Information Processors (zIIP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.86.0.%

Group profile name
Get/Set: Defines the name of the group capacity profile that is being used for the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.93.0.%.*

Program Status Word (PSW) information
Get: An XML string that describes the current PSW information for each logical processor associated with
the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.150.0

IPL Token
Get: The Token used in the last IPL.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.164.0

Group Profile capacity
Get/Set: The current capacity value of the Group Profile the CPC Image object is associated with.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.192.0

Last Used Load Address
Get: The load addressed used in the last IPL.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.201.0

Last Used Load Parameter
Get: The load parameter used in the last IPL.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.202.0

Absolute capping type
Get/Set: The type of absolute capping to perform.

* Data type returned on Get/Set: HWMCA_TYPE_INTEGER
0 None
1 Absolute capping in number of processors

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.217.0.*

Absolute capping value
Get/Set: The value used for absolute capping (if enabled).

* Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of processors when capping in number of processors is enabled.

104 Application Programming Interfaces

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.218.0.*

Application Assist Processor absolute capping type
Get/Set: The type of absolute capping to perform for Application Assist Processor (AAP) processors.

* Data type returned on Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Application Assist Processor (AAP) processors
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.219.0.*

Application Assist Processor absolute capping value
Get/Set: The value used for Application Assist Processor (AAP) absolute capping.

¢ Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of Application Assist Processor (AAP) processors when capping in
number of processors is enabled.

Note: Though this is an integer, value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.220.0.*

Integrated Facility for Linux absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Facility for Linux (IFL) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Integrated Facility for Linux (IFL) processors.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.221.0.*

Integrated Facility for Linux absolute capping value
Get/Set: The value used for Integrated Facility for Linux (IFL) absolute capping (if enabled).

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of Integrated Facility for Linux (IFL) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.222.0.%

Integrated Information Processor absolute capping type

Get/Set: The type of absolute capping to perform for Integrated Information Processor (zIIP) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

Chapter 4. Console application managed objects

1 Absolute capping in number of Integrated Information Processor (zIIP) processors.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.225.0.*

Integrated Information Processor absolute capping value
Get/Set: The value used for Integrated Information Processor (zIIP) absolute capping.

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 Absolute capping not enabled.

1-nnnn
Represents the number of Integrated Information Processor (zIIP) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.226.0.*

CPC image relationships

CPC (H/W image)
A CPC image is a member of a CPC (H/W image); there can be from 1 to n CPC Images. N is
determined by the Licensed Internal Code.

Software image
A CPC image has one software image running in it.

Note: Some operating systems support running guest operating systems within themselves.

CPC image commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Reset normal
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.4 (HWMCA_RESETNORMAL_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Start
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.5 (HWMCA_START_COMMAND)

Stop
SNMP MIB Name - 1.3.6.1.4.1.2.6.42.4.6 (HWMCA_STOP_COMMAND)

PSW restart
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.7 (HWMCA_PSWRESTART_COMMAND)

Send operating system command
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND)

Load
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.10 (HWMCA_LOAD_COMMAND)

Reset clear
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.12 (HWMCA_RESETCLEAR_COMMAND)

106 Application Programming Interfaces

External interrupt
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.19 (HWMCA_EXTERNAL_INTERRUPT_COMMAND)

SCSI load
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.20 (HWMCA_SCSI_LOAD_COMMAND)

SCSI dump
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.21 (HWMCA_SCSI_DUMP_COMMAND)

CPC image notifications

Message (operating system - HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For operating system messages:
¢ An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message text.

* An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating system
message.

* An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message.
* An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message.

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should cause
the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a priority
message or not (HWMCA_TRUE or HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held
message or not (HWMCA_TRUE or HWMCA_FALSE).

¢ An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with the
new operating system message or an HWMCA_TYPE_NULL indicating that there is no prompt text for
this new operating system message.

* An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated this
new operating system message or an HWMCA_TYPE_NULL indicating that there is no operating
system name associated with this new operating system message.

* An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

Status change (HWMCA_EVENT_STATUS_CHANGE)
* An HWMCA_TYPE_INTEGER that specifies the new status value
* An HWMCA_TYPE_INTEGER that specifies the old status value.

Object name change (HWMCA_EVENT_NAME_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new object name
* An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name

* An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.
Object created (HWMCA_EVENT_CREATED)

This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)

This event has no additional data.

Chapter 4. Console application managed objects 107

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)

* An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Disabled wait (HWMCA_EVENT_DISABLED_WAIT)
e An HWMCA_TYPE_OCTETSTRING for the name of the Defined CPC that is associated with the CPC
Image that entered a disabled wait state.

¢ An HWMCA_TYPE_OCTETSTRING for the disabled wait PSW value.

* An HWMCA_TYPE_INTEGER for the partition identifier of the CPC Image that entered a disabled
wait state.

* An HWMCA_TYPE_INTEGER for number of the processor that entered a disabled wait state.

* An HWMCA_TYPE_OCTETSTRING for the serial number of the Defined CPC that is associated with
the CPC Image that entered a disabled wait state.

* An HWMCA_TYPE_OCTETSTRING that specifies the name of the object that the event pertains to (in
this case a CPC Image object).

Coupling facility

Coupling facility name bindings

Coupling facility object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.x.x.*

Where x.x. equals the attribute identifier for the object and an * equals a unique number for that specific
instance of the Coupling Facility Object.

Coupling facility attributes

Name

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.1.0.*

Parent name

Get (CPC’s logical name):

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.2.0.*

Status error
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object is in a state which is not an acceptable status.
HWMCA_FALSE
Object is in an acceptable status state.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.7.0.%

Busy
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object in a busy state (currently performing a task).

108 Application Programming Interfaces

HWMCA_FALSE
Object not in a busy state.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.8.0.%

Message indicator
Get:
* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_TRUE
Object has an operating system message.
HWMCA_FALSE
Object does not have an operating system message.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.9.0.*

Status
Get:
¢ Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:

- HWMCA_STATUS_OPERATING

- HWMCA_STATUS_NOT_OPERATING

- HWMCA_STATUS_NOT_ACTIVATED

- HWMCA_STATUS_EXCEPTIONS

- HWMCA_STATUS_STATUS_CHECK
HWMCA_STATUS_POWERSAVE

. SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.10.0.*

Acceptable status
Get/Set:
* Data type returned on Get: HWMCA_TYPE_INTEGER
* Data type for Set: HWMCA_TYPE_INTEGER
* One or more of the following bit values will be set to on:
- HWMCA_STATUS_OPERATING
- HWMCA_STATUS_NOT_OPERATING
- HWMCA_STATUS_NOT_ACTIVATED
- HWMCA_STATUS_EXCEPTIONS
- HWMCA_STATUS_STATUS_CHECK
HWMCA_STATUS_POWERSAVE
. SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.11.0.*

Activation profile name

Get (always the Image profile):

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.13.0.*

Last used activation profile

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING or HWMCA_TYPE _NULL
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.14.0.*

Object type

Get: This returns the type of object the object identifier represents.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_CF_OBJECT

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.22.0.*

Chapter 4. Console application managed objects 109

Initial processing weight

Get/Set: The relative amount of shared general purpose processor resources initially allocated to the
Coupling Facility object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purposee processor.

1-999 Represents the relative amount of shared general purpose processor resources initially allocated
to the Coupling Facility object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.30.0.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight for general purpose processors is a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial general purpose processor processing weight for the Coupling Facility
object is capped. It represents the logical partition’s maximum share of general purpose
processor resources, regardless of the availability of excess general purpose processor resources.

HWMCA_FALSE (0)
Indicates that the initial general purpose processor processing weight for the Coupling Facility
is not capped. It represents the share of general purpose processor resources guaranteed to a
logical partition when all general purpose processor resources are in use. Otherwise, when
excess general purpose processor resources are available, the logical partition can use them if
necessary.

Note: The initial general purpose processor processing weight capped attribute cannot be set and the
value returned for a get request is always HWMCA_FALSE when the Coupling Facility does not
represent a logical partition or the Coupling Facility does not represent a logical partition with at least
one not dedicated general purpose processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.31.0.%

Minimum processing weight

Get/Set: The minimum relative amount of shared general purpose processor resources allocated to the
Coupling Facility object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1-999 Represents the minimum relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

* Data type for Set: HWMCA_TYPE_INTEGER

110 Application Programming Interfaces

A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared general purpose processor resources allocated to the Coupling Facility object.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.38.0.*

Maximum processing weight

Get/Set: The maximum relative amount of shared general purpose processor resources allocated to the
Coupling Facility object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1-999 Represents the maximum relative amount of shared general purpose processor resources
allocated to the Coupling Facility object.

* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared general purpose processor resources allocated to the Coupling Facility object.

A value of zero can also be specified to indicate that there is no maximum value for the processing
weight.

Note: The setting of this attribute is only valid for Coupling Facility objects that represent a logical
partition with at least one not dedicated general purpose processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.39.0.*

Current processing weight

Get: The relative amount of shared general purpose processor resources currently allocated to the
Coupling Facility object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 Coupling Facility does not represent a logical partition or the Coupling Facility does not
represent a logical partition with at least one not dedicated general purpose processor.

1-999 Represents the relative amount of shared general purpose processor resources currently
allocated to the Coupling Facility object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.41.0.*

Current processing weight capped
Get: Whether or not the current general purpose processing weight is a limit or a target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current general purpose processing weight for the Coupling Facility object is
capped. It represents the logical partition’s maximum share of resources, regardless of the
availability of excess processor resources.

HWMCA_FALSE
Indicates that the general purpose current processing weight for the Coupling Facility is not
capped. It represents the share of resources guaranteed to a logical partition when all processor
resources are in use. Otherwise, when excess processor resources are available, the logical
partition can use them if necessary.

Chapter 4. Console application managed objects 111

Note: The current general purpose processing weight capped attribute cannot be set and the value
returned for a get request is always HWMCA_FALSE when the Coupling Facility does not represent a
logical partition or the Coupling Facility does not represent a logical partition with at least one not
dedicated general purpose processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.42.0.*

WorkLoad manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.
This attribute and the various capping attributes are mutually exclusive and cannot be enabled at the
same time. Therefore in order to enable this attribute it might be necessary to first disable any capping
attribute that is currently enabled. It is also possible to use a value of -1 when setting this attribute,
which will result in this attribute being enabled and all capping attributes being disabled automatically
in a single operation.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.40.0.%

Defined capacity

Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 No defined capacity is specified for this logical partition.
1 - nnnn

Represents the amount of defined capacity specified for this logical partition.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.43.0.*

Partition identifier

Get: The partition identifier for the Coupling Facility object.
* Data type returned on Get: HWMCA_TYPE_INTEGER

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.51.0%

Initial Internal Coupling Facility processing weight
Get/Set: The relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared Internal Coupling Facility (ICF) processor
resources allocated to the CPC Image object.

112 Application Programming Interfaces

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.72.0.*

Initial Internal Coupling Facility processing weight capped
Get/Set: Whether or not the initial processing weight for Internal Coupling Facility (ICF) processors is a
limit or a target.

Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE (1)
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Internal
Coupling Facility (ICF) processor resources, regardless of the availability of excess Internal
Coupling Facility (ICF) processor resources.

HWMCA _FALSE (0)
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image is not capped. It represents the share of Internal Coupling Facility (ICF) processor
resources guaranteed to a logical partition when all Internal Coupling Facility (ICF) processor
resources are in use. Otherwise, when excess Internal Coupling Facility (ICF) processor
resources are available, the logical partition can use them if necessary.

Note: The initial Internal Coupling Facility (ICF) processor processing weight capped attribute cannot
be set and the value returned for a Get request is always HWMCA_FALSE when the CPC Image does
not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Internal Coupling Facility (ICF) processor.

This attribute and the Workload manager enabled attribute are mutually exclusive and cannot both be
enabled at the same time. Therefore in order to enable this attribute it might be necessary to first
disable the Workload manager enabled attribute. It is also possible to use a value of -1 when setting
this attribute, which will result in this attribute being enabled and the Workload manager enabled
attribute being disabled automatically in a single operation.

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.73.0.%

Minimum Internal Coupling Facility processing weight
Get/Set: The minimum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.

Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the minimum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.
Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the minimum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.74.0.*

Maximum Internal Coupling Facility processing weight
Get/Set: The maximum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.

Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 113

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the maximum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

¢ Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.75.0.*

Current Internal Coupling Facility processing weight
Get: The current relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the current relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.76.0.*

Current Internal Coupling Facility processing weight capped
Get: Whether or not the current Internal Coupling Facility (ICF) processing weight is a limit or a target.

* Data type for Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the current Internal Coupling Facility (ICF) processing weight for the CPC Image
object is capped. It represents the logical partition’s maximum share of resources, regardless of
the availability of excess processor resources.

HWMCA_FALSE
Indicates that the current Internal Coupling Facility (ICF) processing weight for the CPC Image
is not capped. It represents the share of resources guaranteed to a logical partition when all
processor resources are in use. Otherwise, when excess processor resources are available, the
logical partition can use them if necessary.

Note: The current Internal Coupling Facility (ICF) processing weight capped attribute cannot be set
and the value returned for a get request is always HWMCA_FALSE when the CPC Image does not
represent a logical partition or the CPC Image does not represent a logical partition with at least one
not dedicated Internal Coupling Facility (ICF) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.77.0.%

Program Status Word (PSW) information

Get: An XML string that describes the current PSW information for each logical processor associated with
the Coupling Facility object.

e Data type returned on Get: HWMCA_TYPE_OCTETSTRING

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed description of this XML
data.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.150.0

114 Application Programming Interfaces

Internal Coupling Facility absolute capping type
Get/Set: The type of absolute capping to perform for Internal Coupling Facility (ICF) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Internal Coupling Facility (ICF) processors.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.223.0.*

Internal Coupling Facility absolute capping value
Get/Set: The value used for Internal Coupling Facility (ICF) absolute capping.

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 Absolute capping not enabled.

1-nnnn
Represents the number of Internal Coupling Facility (ICF) processors when capping in number
of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.2.0.224.0.%
Coupling facility relationships

CPC (H/W image)
A coupling facility image is a member of a CPC (H/W image) there can be from 1 to n coupling facility
images. N is determined by the Licensed Internal Code.

Coupling Facility Control Code (CFCC)

A coupling facility image is running the Coupling Facility Control Code to perform the Coupling Facility
functions.

Coupling facility commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Send operating system command
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.3 (HWMCA_SEND_OPSYS_COMMAND)

Coupling facility notifications

Message (operating system - HWMCA_EVENT_MESSAGE)
An HWMCA_TYPE_INTEGER that specifies whether the message is a hardware or operating system
message (HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE).

For operating system messages:
* An HWMCA_TYPE_OCTETSTRING that specifies the new or refreshed operating system message text.

¢ An HWMCA_TYPE_OCTETSTRING that specifies the message identifier of the new operating system
message.

* An HWMCA_TYPE_OCTETSTRING that specifies the date of the new operating system message.

Chapter 4. Console application managed objects 115

* An HWMCA_TYPE_OCTETSTRING that specifies the time of the new operating system message.

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message should cause
the alarm to be sounded (HWMCA_TRUE or HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a priority
message or not (HWMCA_TRUE or HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies whether the new operating system message is a held
message or not (HWMCA_TRUE or HWMCA_FALSE).

* An HWMCA_TYPE_OCTETSTRING that specifies the prompt text that should be associated with the
new operating system message or an HWMCA_TYPE_NULL indicating that there is no prompt text for
this new operating system message.

¢ An HWMCA_TYPE_OCTETSTRING that specifies the name of the operating system that generated this
new operating system message or an HWMCA_TYPE_NULL indicating that there is no operating
system name associated with this new operating system message.

* An HWMCA_TYPE_INTEGER that specifies whether the message is a new (HWMCA_FALSE) or
refresh message (HWMCA_TRUE).

Status change (HWMCA_EVENT_STATUS_CHANGE)
* An HWMCA_TYPE_INTEGER that specifies the new status value
* An HWMCA_TYPE_INTEGER that specifies the old status value.

Object name change (HWMCA_EVENT_NAME_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new object name
* An HWMCA_TYPE_OCTETSTRING that specifies the old object name.

Object activation profile change (HWMCA_EVENT_ACTIVATE_PROF_CHANGE)
* An HWMCA_TYPE_OCTETSTRING that specifies the new activation profile name
* An HWMCA_TYPE_OCTETSTRING that specifies the old activation profile name.

Object created (HWMCA_EVENT_CREATED)

This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)

This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)

* An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies the status value for the object.

Reset activation profile object

Reset activation profile name bindings

Reset activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.x.x.y.z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Reset Activation Profile.

116 Application Programming Interfaces

Reset activation profile attributes

Name

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.1.0.*.*

Object type

Get: This returns the type of object the object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_ACT_PROFILE_RESET
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.22.0.*.*

I0CDS

Get/Set:

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Reset Activation Profile will use the

currently active IOCDS.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.27.0.*.*

Processor running time type

Get/Set: Defines whether the processor running time is dynamically determined by the system or set to a

constant value for the Defined CPC object.
* Data type for Get/Set: HWMCA_TYPE_INTEGER

0 (HWMCA_DETERMINED_SYSTEM)

The processor running is dynamically determined by the system.

1 (HWMCA_DETERMINED_USER)
The processor running time is set to a constant value.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.78.0.*.*

Processor running time

Get/Set: Defines the amount of continuous time allowed for logical processors to perform jobs on shared

processors for the Defined CPC object.
* Data type for Get/Set: HWMCA_TYPE_INTEGER

A value between 1 and 100 for the user defined processor running time.

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER). Additionally, this value will always be returned as zero if the
processor running time type is set to 0 (HWMCA_DETERMINED_SYSTEM).

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.79.0.*.*

End timeslice if CPC image enters a wait state

Get/Set: Defines whether CPC Images lose their share of running time when they enter a wait state.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
HWMCA_TRUE

Indicates that a CPC Image should lose its share of running time when it enters a wait state.

HWMCA_FALSE

Indicates that a CPC Image should not lose its share of running time when it enters a wait

state.

Chapter 4. Console application managed objects

117

Note: This value can only be set if the processor running time type is set to 1
(HWMCA_DETERMINED_USER). Additionally, this value will always be returned as zero if the
processor running time type is set to 0 (HWMCA_DETERMINED_SYSTEM).

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.80.0.* %

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.5.0.203.0.* *

Image activation profile object

Image activation profile name bindings

Image activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.x.x.y.Z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Image Activation Profile.

Image activation profile attributes

Name

Get:

e Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.1.0.*.*

Object type

Get: This returns the type of object the object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_ACT_PROFILE_IMAGE

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.22.0.* *

IPL address

Get/Set:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Image Activation Profile will use next IPL
address set by HCD.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.28.0.*.*

IPL parameter

Get/Set:

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Image Activation Profile will use next IPL
parameter set by HCD.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.29.0.*.*

118 Application Programming Interfaces

Initial processing weight
Get/Set: The relative amount of shared processor resources initially allocated to the CPC Image object.
* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1-999 Represents the relative amount of shared processor resources initially allocated to the CPC
Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared processor resources allocated to the CPC
Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.30.0.*.*

Initial processing weight capped
Get/Set: Whether or not the initial processing weight is a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial processing weight for the CPC Image object is capped. It represents the
logical partition’s maximum share of resources, regardless of the availability of excess processor
resources.

HWMCA_FALSE
Indicates that the initial processing weight for the CPC Image is not capped. It represents the
share of resources guaranteed to a logical partition when all processor resources are in use.
Otherwise, when excess processor resources are available, the logical partition can use them if
necessary.

Note: The initial processing weight capped attribute cannot be set and the value returned for a Get
request is always HWMCA_FALSE when the CPC Image does not represent a logical partition with at
least one not dedicated central processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.31.0.*.*

Minimum processing weight
Get/Set: The minimum relative amount of shared processor resources allocated to the CPC Image object.
* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1-999 Represents the minimum relative amount of shared processor resources allocated to the CPC
Image object.
¢ Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 and less than or equal to the Initial Processing Weight used to define the minimum
relative amount of shared processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.38.0.%.*

Chapter 4. Console application managed objects 119

Maximum processing weight
Get/Set: The maximum relative amount of shared processor resources allocated to the CPC Image object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition with at least one not dedicated central
processor.

1-999 Represents the maximum relative amount of shared processor resources allocated to the CPC
Image object.
* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 and greater than or equal to the Initial Processing Weight used to define the maximum
relative amount of shared processor resources allocated to the CPC Image object.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated central processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.39.0.* %

WorkLoad manager enabled
Get/Set: Whether or not WorkLoad Manager is allowed to change processing weight related attributes.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
HWMCA_TRUE

Indicates that WorkLoad Manager is allowed to change processing weight related attributes for
this CPC Image object.

HWMCA_FALSE
Indicates that WorkLoad Manager is not allowed to change processing weight related attributes
for this CPC Image object.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.40.0.*.%

Defined capacity

Get/Set: The defined capacity expressed in terms of Millions of Service Units (MSU)s per hour. MSUs is a
measure of processor resource consumption. The amount of MSUs a logical partition consumes is
dependent on the model, the number of logical processors available to the partition, and the amount of
time the logical partition is dispatched. The defined capacity value specifies how much capacity the
logical partition is to be managed to by WorkLoad Manager for the purpose of software pricing.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 No defined capacity is specified for this logical partition.

1 - nnnn
Represents the amount of defined capacity specified for this logical partition.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.43.0.*.*

IPL type
Get/Set: The IPL type value for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_IPLTYPE_STANDARD
Indicates that the image activation profile is used to perform a standard load.

HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is used to perform a SCSI load.

HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is used to perform a SCSI dump.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.52.0.* %

120 Application Programming Interfaces

Worldwide port name
Get/Set: The worldwide port name value for the activation profile.

 Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.53.0.*.%

Boot program selector
Get/Set: The boot program selector value for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.54.0.*.*

Logical unit number

Get/Set: The logical unit number value for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.55.0.*.*

Boot record logical block address

Get/Set: The boot record logical block address value for the activation profile.
* Data type for get/Set: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.56.0.*.*

Operating system specific load parameters
Get/Set: The operating system specific load parameters for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.57.0.*.*

Initial Application Assist Processor processing weight
Get/Set: The relative amount of shared Application Assist Processor (AAP) processor resources initially
allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the relative amount of shared Application Assist Processor (AAP) processor
resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Application Assist Processor (AAP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Application
Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.60.0.*.*

Initial Application Assist Processor processing weight capped
Get/Set: Whether or not the initial processing weight for Application Assist Processor (AAP) processors is
a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Application
Assist Processor (AAP) processor resources, regardless of the availability of excess Application
Assist Processor (AAP) processor resources.

HWMCA_FALSE
Indicates that the initial Application Assist Processor (AAP) processor processing weight for the

Chapter 4. Console application managed objects 121

CPC Image is not capped. It represents the share of Application Assist Processor (AAP)
processor resources guaranteed to a logical partition when all Application Assist Processor
(AAP) processor resources are in use. Otherwise, when excess Application Assist Processor
(AAP) processor resources are available, the logical partition can use them if necessary.

Note: The initial Application Assist Processor (AAP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.61.0.*.*

Minimum Application Assist Processor processing weight
Get/Set: The minimum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the minimum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. Note: The setting of this attribute is only
valid for CPC Image objects that represent a logical partition with at least one not dedicated
Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.62.0.*.*

Maximum Application Assist Processor processing weight
Get/Set: The maximum relative amount of shared Application Assist Processor (AAP) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Application Assist Processor (AAP) processor.

1-999 Represents the maximum relative amount of shared Application Assist Processor (AAP)
processor resources initially allocated to the CPC Image object.
¢ Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Application Assist Processor
(AAP) processor resources allocated to the CPC Image object. A value of zero can also be specified to
indicate that there is no maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Application Assist Processor (AAP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.63.0.*.%

Initial Integrated Facility for Linux processing weight
Get/Set: The relative amount of shared Integrated Facility for Linux (IFL) processor resources initially
allocated to the CPC Image object activated with this profile.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object.

122 Application Programming Interfaces

* Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the relative amount of shared Integrated Facility for Linux (IFL)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.66.0.*.*

Initial Integrated Facility for Linux Processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Facility for Linux (IFL) processors is
a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Integrated
Facility for Linux (IFL) processor resources, regardless of the availability of excess Integrated
Facility for Linux (IFL) processor resources.

HWMCA_FALSE
Indicates that the initial Integrated Facility for Linux (IFL) processor processing weight for the
CPC Image is not capped. It represents the share of Integrated Facility for Linux (IFL)
processor resources guaranteed to a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when excess Integrated Facility for Linux (IFL)
processor resources are available, the logical partition can use them if necessary.

Note: The initial Integrated Facility for Linux (IFL) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.67.0.*.*

Minimum Integrated Facility for Linux processing weight
Get/Set: The minimum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

1-999 Represents the minimum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

 Data type for Set: HWMCA_TYPE_INTEGER
A value 1 - 999 used to define the minimum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. Note: The setting of this attribute is only

valid for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Facility for Linux (IFL) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.68.0.*.*

Maximum Integrated Facility for Linux processing weight
Get/Set: The maximum relative amount of shared Integrated Facility for Linux (IFL) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Facility for Linux (IFL) processor.

Chapter 4. Console application managed objects 123

1-999 Represents the maximum relative amount of shared Integrated Facility for Linux (IFL)
processor resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the CPC Image object. The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Application
Assist Processor (AAP) processor. A value of zero can also be specified to indicate that there is no
maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.69.0.* %

Initial Internal Coupling Facility processing weight
Get/Set: The relative amount of shared Internal Coupling Facility (ICF) processor resources initially
allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object.

¢ Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared Internal Coupling Facility (ICF) processor
resources allocated to the CPC Image object. Note: The setting of this attribute is only valid for CPC
Image objects that represent a logical partition with at least one not dedicated Internal Coupling
Facility (ICF) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.72.0.* %

Initial Internal Coupling Facility processing weight capped
Get/Set: Whether or not the initial processing weight for Internal Coupling Facility (ICF) processors is a
limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image object is capped. It represents the logical partition’s maximum share of Internal
Coupling Facility (ICF) processor resources, regardless of the availability of excess Internal
Coupling Facility (ICF) processor resources.

HWMCA_FALSE
Indicates that the initial Internal Coupling Facility (ICF) processor processing weight for the
CPC Image is not capped. It represents the share of Internal Coupling Facility (ICF) processor
resources guaranteed to a logical partition when all Internal Coupling Facility (ICF) processor
resources are in use. Otherwise, when excess Internal Coupling Facility (ICF) processor
resources are available, the logical partition can use them if necessary.

Note: The initial Internal Coupling Facility (ICF) processor processing weight capped attribute cannot
be set and the value returned for a Get request is always HWMCA_FALSE when the CPC Image does
not represent a logical partition or the CPC Image does not represent a logical partition with at least
one not dedicated Internal Coupling Facility (ICF) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.73.0.*.*

124 Application Programming Interfaces

Minimum Internal Coupling Facility processing weight
Get/Set: The minimum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the minimum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the minimum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Internal
Coupling Facility (ICF) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.74.0.*.*

Maximum Internal Coupling Facility processing weight
Get/Set: The maximum relative amount of shared Internal Coupling Facility (ICF) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Internal Coupling Facility (ICF) processor.

1-999 Represents the maximum relative amount of shared Internal Coupling Facility (ICF) processor
resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Internal
Coupling Facility (ICF) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.75.0.*.*

Initial Integrated Information Processors processing weight
Get/Set: The relative amount of shared Integrated Information Processors (zIIP) processor resources
initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the relative amount of shared Integrated Information Processors (zIIP)
processor resources allocated to the CPC Image object. Note: The setting of this attribute is only valid
for CPC Image objects that represent a logical partition with at least one not dedicated Integrated
Information Processors (zIIP) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.81.0.*.*

Initial Integrated Information Processors processing weight capped
Get/Set: Whether or not the initial processing weight for Integrated Information Processors (zIIP)
processors is a limit or a target.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 125

HWMCA_TRUE
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image object is capped. It represents the logical partition’s maximum share of
Integrated Information Processors (zIIP) processor resources, regardless of the availability of
excess Integrated Information Processors (zIIP) processor resources.

HWMCA_FALSE
Indicates that the initial Integrated Information Processors (zIIP) processor processing weight
for the CPC Image is not capped. It represents the share of Integrated Information Processors
(zIIP) processor resources guaranteed to a logical partition when all Integrated Information
Processors (zIIP) processor resources are in use. Otherwise, when excess Integrated Information
Processors (zIIP) processor resources are available, the logical partition can use them if
necessary.

Note: The initial Integrated Information Processors (zIIP) processor processing weight capped attribute
cannot be set and the value returned for a Get request is always HWMCA_FALSE when the CPC
Image does not represent a logical partition or the CPC Image does not represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.82.0.*.*

Minimum Integrated Information Processors processing weight
Get/Set: The minimum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the minimum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.

* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the minimum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. Note: The setting of this
attribute is only valid for CPC Image objects that represent a logical partition with at least one not
dedicated Integrated Information Processors (zIIP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.83.0.*.*

Maximum Integrated Information Processors processing weight
Get/Set: The maximum relative amount of shared Integrated Information Processors (zIIP) processor
resources initially allocated to the CPC Image object activated with this profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER

0 CPC Image does not represent a logical partition or the CPC Image does not represent a logical
partition with at least one not dedicated Integrated Information Processors (zIIP) processor.

1-999 Represents the maximum relative amount of shared Integrated Information Processors (zIIP)
processor resources initially allocated to the CPC Image object.
* Data type for Set: HWMCA_TYPE_INTEGER

A value 1 - 999 used to define the maximum relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the CPC Image object. A value of zero can also be
specified to indicate that there is no maximum value for the processing weight.

Note: The setting of this attribute is only valid for CPC Image objects that represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.84.0.*.*

126 Application Programming Interfaces

Group profile name
Get/Set: Defines the name of the group capacity profile that is to be used for the CPC Image object
activated with this profile.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.93.0.%.%

Load at activation
Get/Set: Defines if the CPC Image object activated with this profile should be loaded (IPLed) at the end
of the activation.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The CPC Image object will be loaded (IPLed) at the end of the activation.

HWMCA_FALSE
The CPC Image object will not be loaded (IPLed) at the end of the activation.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.94.0.* %

Central storage
Get/Set: Defines the initial amount of central storage (in megabytes) to be used for the CPC Image object
activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.95.0.*.*

Reserved central storage
Get/Set: Defines the reserved amount of central storage (in megabytes) to be used for the CPC Image
object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.96.0.*.*

Expanded storage
Get/Set: Defines the initial amount of expanded storage (in megabytes) to be used for the CPC Image
object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.97.0.* %

Reserved expanded storage
Get/Set: Defines the reserved amount of expanded storage (in megabytes) to be used for the CPC Image
object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.98.0.*.*

Number of dedicated general purpose processors
Get/Set: Defines the number of dedicated general purpose processors to be used for the CPC Image
object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.99.0.* *

Number of reserved dedicated general purpose processors
Get/Set: Defines the number of reserved dedicated general purpose processors to be used for the CPC
Image object activated with this profile.

 Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.100.0.*.*

Chapter 4. Console application managed objects 127

Number of dedicated Application Assist Processor (AAP) processors
Get/Set: Defines the number of dedicated Application Assist Processor (AAP) processors to be used for
the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.101.0.*.*

Number of reserved dedicated Application Assist Processor (AAP) Processors
Get/Set: Defines the number of reserved dedicated Application Assist Processor (AAP) processors to be
used for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.102.0.*.*

Number of dedicated Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of dedicated Integrated Facility for Linux (IFL) processors to be used for the
CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.103.0.*.*

Number of reserved dedicated Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of reserved dedicated Integrated Facility for Linux (IFL) processors to be
used for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.104.0.*.*

Number of dedicated Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of dedicated Internal Coupling Facility (ICF) processors to be used for the
CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.105.0.%.*

Number of reserved dedicated Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of reserved dedicated Internal Coupling Facility (ICF) processors to be used
for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.106.0.%.*

Number of dedicated Integrated Information Processors (zlIP) processors
Get/Set: Defines the number of dedicated Integrated Information Processors (zIIP) processors to be used
for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.107.0.*.*

Number of reserved dedicated Integrated Information Processors (zlIP) processors
Get/Set: Defines the number of reserved dedicated Integrated Information Processors (zIIP) processors to
be used for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.108.0.*.*

Number of shared general purpose processors
Get/Set: Defines the number of shared general purpose processors to be used for the CPC Image object
activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

128 Application Programming Interfaces

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.109.0.*.%

Number of reserved shared general purpose processors
Get/Set: Defines the number of reserved shared general purpose processors to be used for the CPC Image
object activated with this profile.

 Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.110.0.*.*

Number of shared Application Assist Processor (AAP) processors
Get/Set: Defines the number of shared Application Assist Processor (AAP) processors to be used for the
CPC Image object activated with this profile.

 Data type for Get/Set: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.111.0.%.%

Number of reserved shared Application Assist Processor (AAP) processors
Get/Set: Defines the number of reserved shared Application Assist Processor (AAP) processors to be used
for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.112.0.* *

Number of shared Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of shared Integrated Facility for Linux (IFL) processors to be used for the
CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.113.0.* *

Number of reserved shared Integrated Facility for Linux (IFL) processors
Get/Set: Defines the number of reserved shared Integrated Facility for Linux (IFL) processors to be used
for the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.114.0.* *

Number of shared Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of shared Internal Coupling Facility (ICF) processors to be used for the CPC
Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.115.0.%.*

Number of reserved shared Internal Coupling Facility (ICF) processors
Get/Set: Defines the number of reserved shared Internal Coupling Facility (ICF) processors to be used for
the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.116.0.*.*

Number of shared Integrated Information Processors (zlIP) processors
Get/Set: Defines the number of shared Integrated Information Processors (zIIP) processors to be used for
the CPC Image object activated with this profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.117.0.%.*

Number of reserved shared Integrated Information Processors (zlIP) processors
Get/Set: Defines the number of reserved shared Integrated Information Processors (zIIP) processors to be
used for the CPC Image object activated with this profile.

Chapter 4. Console application managed objects 129

* Data type for Get/Set: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.118.0.* *

Basic CPU counter authorization control
Get/Set: Enables/disables the use of the basic CPU counter facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.168.0.*.*

Problem state CPU counter authorization control
Get/Set: Enables/disables the use of the problem state CPU counter facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.169.0.* *

Crypto activity CPU counter authorization control
Get/Set: Enables/disables the use of the crypto activity CPU counter facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.170.0.%.*

Extended CPU counter authorization control
Get/Set: Enables/disables the use of the extended CPU counter facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.171.0.*.%

Coprocessor group CPU counter authorization control
Get/Set: Enables/disables the use of the coprocessor group CPU counter facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.172.0.*.%

130 Application Programming Interfaces

Basic CPU sampling authorization control
Get/Set: Enables/disables the use of the basic CPU sampling facility for the CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.173.0.%.*

Permit AES key import functions
Get/Set: Enables/disables the importing of AES keys for the associated CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The importing of AES keys is enabled.

HWMCA_FALSE
The importing of AES keys is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.183.0.*.*

Permit DEA key import functions
Get/Set: Enables/disables the importing of DEA keys for the associated CPC Image.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The importing of DEA keys is enabled.

HWMCA _FALSE
The importing of DEA keys is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.184.0.*.*

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.203.0.*.*

Partition Identifier
Get/Set: The partition identifier for the activation profile.

* Data type returned on Get: HWMCA_TYPE_INTEGER
* Data type for Set: HWMCA_TYPE_INTEGER between 0 and 63, inclusive.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.51.0.*.*

Operating mode
Get/Set: The operating mode value for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
- HWMCA_ESA390_OPERATING_MODE (1)
- HWMCA_ESA390TPF_OPERATING_MODE (2)
- HWMCA_CF_OPERATING_MODE (3)
- HWMCA_LINUX_OPERATING_MODE (4)
- HWMCA_FMEX_OPERATING_MODE (5)
- HWMCA_HMEX_OPERATING_MODE (6)

Chapter 4. Console application managed objects

131

- HWMCA_HMAS_OPERATING_MODE (7)

- HWMCA_ZVM_OPERATING_MODE (8)

- HWMCA_ZAWARE_OPERATING_MODE (9)
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.204.0.*.%

Clock type
Get/Set: The clock type assignment for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
- HWMCA_CLOCK_TYPE_STANDARD (0)
- HWMCA_CLOCK_TYPE_LPAR (1)

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.205.0.*.*

Time offset days
Get/Set: The time offset days for the activation profile.

¢ Data type for Get/Set: HWMCA_TYPE_INTEGER (0 - 999)
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.206.0.%.*

Time offset hours
Get/Set: The time offset hours for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER (0 - 23)
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.207.0.%.*

Time offset minutes
Get/Set: The time offset minutes for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER (0, 15, 30, or 45)
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.208.0.* *

Time offset increase or decrease
Get/Set: The time offset increase/decrease setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The local time zone is east of GMT.

HWMCA_FALSE
The local time zone is west of GMT.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.209.0.%.*

LICCC validation

Get/Set: Enables/disables whether or not the activation profile must conform to the current LICCC
configuration.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The activation profile must conform to the current LICCC configuration.

HWMCA_FALSE
The activation profile is not required to conform to the current LICCC configuration.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.210.0.*.*

Global performance data control
Get/Set: Enables/disables the global performance data control setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

132 Application Programming Interfaces

HWMCA_TRUE
The global performance data control is enabled.

HWMCA_FALSE
The global performance data control is disabled.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.211.0.*.*

Input/Output configuration control
Get/Set: Enables/disables the I/O configuration control setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The I/0 configuration control is enabled.

HWMCA_FALSE
The I/0 configuration control is disabled.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.212.0.*.*

Cross partition authority control
Get: The cross partition authority control setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The cross partition authority control is enabled.

HWMCA_FALSE
The cross partition authority control is disabled.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.213.0.*.*

Logical partition isolation control
Get/Set: Enables/disables the logical partition isolation control setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The logical partition isolation control is enabled.

HWMCA_FALSE
The logical partition isolation control is disabled.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.214.0.*.%

Absolute capping type
Get/Set: The type of absolute capping to perform.

* Data type returned on Get/Set: HWMCA_TYPE_INTEGER
0 None
1 Absolute capping in number of processors

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.217.0.*

Absolute capping value
Get/Set: The value used for absolute capping (if enabled).

* Data type returned on Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of processors when capping in number of processors is enabled.

Chapter 4. Console application managed objects

133

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.218.0.*

Application Assist Processor absolute capping type
Get/Set: The type of absolute capping to perform for Application Assist Processor (AAP) processors.

* Data type returned on Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Application Assist Processor (AAP) processors
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.219.0.*

Application Assist Processor absolute capping value
Get/Set: The value used for Application Assist Processor (AAP) absolute capping.

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of Application Assist Processor (AAP) processors when capping in
number of processors is enabled.

Note: Though this is an integer, value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.220.0.%

Integrated Facility for Linux absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Facility for Linux (IFL) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Integrated Facility for Linux (IFL) processors.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.221.0.*

Integrated Facility for Linux absolute capping value
Get/Set: The value used for Integrated Facility for Linux (IFL) absolute capping (if enabled).

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 None

1-nnnn
Represents the number of Integrated Facility for Linux (IFL) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.222.0.%

Internal Coupling Facility absolute capping type
Get/Set: The type of absolute capping to perform for Internal Coupling Facility (ICF) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

134 Application Programming Interfaces

1 Absolute capping in number of Internal Coupling Facility (ICF) processors.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.223.0.*

Internal Coupling Facility absolute capping value
Get/Set: The value used for Internal Coupling Facility (ICF) absolute capping.

 Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 Absolute capping not enabled.

1-nnnn
Represents the number of Internal Coupling Facility (ICF) processors when capping in number
of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.224.0.*

Integrated Information Processor absolute capping type
Get/Set: The type of absolute capping to perform for Integrated Information Processor (zIIP) processors.

* Data type for Get/Set: HWMCA_TYPE_INTEGER
0 None

1 Absolute capping in number of Integrated Information Processor (zIIP) processors.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.225.0.*

Integrated Information Processor absolute capping value
Get/Set: The value used for Integrated Information Processor (zIIP) absolute capping.

* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING
0 Absolute capping not enabled.

1-nnnn
Represents the number of Integrated Information Processor (zIIP) processors when capping in
number of processors is enabled.

Note: Though this is an integer value, it must be specified within an
HWMCA_TYPE_OCTETSTRING data type. This was done in case future absolute capping
types require fractional units.

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.6.0.226.0.*

Load activation profile object

Load activation profile name bindings

Load activation profile object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.x.X.y.Z

Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific instance
of the CPC Object, and z equals a unique number for the specific instance of the Load Activation Profile.

Chapter 4. Console application managed objects 135

Load activation profile attributes

Name

Get:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.1.0.*.*

Object type

Get: This returns the type of object the object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_ACT_PROFILE_LOAD

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.22.0.*.*

IPL address

Get/Set:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Load Activation Profile will use next IPL
address set by HCD.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.28.0.*.*

IPL parameter

Get/Set:

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING

Note: A value of an empty string is used to indicate that the Load Activation Profile will use next IPL
parameter set by HCD.
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.29.0.* %

IPL type
Get/Set: The IPL type value for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_INTEGER
HWMCA_IPLTYPE_STANDARD
Indicates that the image activation profile is used to perform a standard load.
HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is used to perform a SCSI load.
HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is used to perform a SCSI dump.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.52.0.* *

Worldwide port name

Get/Set: The worldwide port name value for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.53.0.*.*

Boot program selector

Get/Set: The boot program selector value for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_INTEGER

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.54.0.* *

Logical unit number

Get/Set: The logical unit number value for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.55.0.*.*

136 Application Programming Interfaces

Boot record logical block address

Get/Set: The boot record logical block address value for the activation profile.
* Data type for get/Set: HWMCA_TYPE_OCTETSTRING

* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.56.0.*.*

Operating system specific load parameters

Get/Set: The operating system specific load parameters for the activation profile.
* Data type for Get/Set: HWMCA_TYPE_OCTETSTRING

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.57.0.* %

Store Status
Get/Set: The store status setting for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
The store status is performed before the load starts.

HWMCA_FALSE
The store status is not performed before the load starts.
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.166.0.* * * *

Load Type
Get/Set: The load type for the activation profile.

* Data type for Get/Set: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Clears main storage during the load.

HWMCA _FALSE
Performs the load without clearing main storage.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.167.0.** *.*

Description

Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).
¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING

¢ Data type for Set: HWMCA_TYPE_OCTETSTRING

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.7.0.203.0.*.%

Group profile object

Group profile name bindings

Group profile object identifier

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.x.x.y.z
Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific
instance of the CPC Object, and z equals a unique number for the specific instance of the Group
Profile.

Group profile attributes

Name
Get: This returns the name of object the group profile object identifier represents.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.1.0.*.*.**

Chapter 4. Console application managed objects 137

Object type

Get: This returns the type of object the group profile object identifier represents.

* Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_ACT_PROFILE_GROUP
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.22.0.* ***

Capacity

Get/Set: This returns the capacity value of object the group profile object identifier represents.
* Data type returned on Get: HWMCA_TYPE_INTEGER

¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.92.0.*.*.**

Description
Get/Set: The description of the profile with a maximum length of 51 (including the null terminator).

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* Data type for Set: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.8.0.203.0.* *

Capacity record object

Capacity record name bindings

Capacity record object identifier

SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.x.x.y.Z
Where x.x. equals the attribute identifier for the object, y equals a unique number for the specific
instance of the Defined CPC Object, and z equals a unique number for the specific instance of the
Capacity Record. Additionally, the capacity record itself can be queried using an object identifier
of the form 1.3.6.1.4.1.2.6.42.9.0.y.z. When the capacity record itself is queried, it returns a data
type of HWMCA_TYPE_OCTETSTRING with the data being an XML string describing all aspects
of the record. Refer to |Appendix F, “XML descriptions,” on page 219| for details on the format of
the XML that is returned.

Capacity record attributes

Object type

Get: This returns the type of object the capacity record object identifier represents.
* Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.22.0.*.*

Record identifier
Get: This returns the identifier for the capacity record.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.135.0.* * *.*

Record type

Get: This returns a value that indicates the type of capacity record.

* Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD_TYPE_CBU
HWMCA_CAPACITY_RECORD_TYPE_OOCOD
HWMCA_CAPACITY_RECORD_TYPE_PLANNED_EVENT
HWMCA_CAPACITY_RECORD_TYPE_LOANER

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.136.0.*.**.*

138 Application Programming Interfaces

Activation status
Get: This returns an indication if any of the resources defined for the record are currently activated.

* Data type returned on Get: HWMCA_TYPE_INTEGER
HWMCA_CAPACITY_RECORD_STATUS_NOT_ACTIVATED
HWMCA_CAPACITY_RECORD_STATUS_REAL HWMCA_CAPACITY_RECORD_STATUS_TEST
HWMCA_CAPACITY_RECORD_STATUS_CAN_BE_ACTIVATED

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.137.0.**.*.*

Activation date
Get: Defines the time stamp for when additional capacity for the record was activated.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.138.0.*.*.**

Record expiration date
Get: Defines the time stamp for when the capacity record will expire.

 Data type returned on Get: HWMCA_TYPE_OCTETSTRING
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.139.0.* * * *

Activation expiration date
Get: Defines the time stamp for when the additional capacity activated for the record will expire and no
longer be active.

¢ Data type returned on Get: HWMCA_TYPE_OCTETSTRING
* SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.140.0.*.* *.*

Maximum real days
Get: Defines the maximum days that real additional capacity can be activated for the record. A value of
-1 indicates that the number of days is unlimited.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.141.0.* *.**

Maximum test days
Get: Defines the maximum days that test additional capacity can be activated for the record. A value of -1
indicates that the number of days is unlimited.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.142.0.* *.**

Remaining real days
Get: Defines the remaining number of days that additional real capacity can be active for the record. A
value of -1 indicates that the number of days is unlimited.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.143.0.* *.**

Remaining test days
Get: Defines the remaining number of days that additional test capacity can be active for the record. A
value of -1 indicates that the number of days is unlimited.

* Data type returned on Get: HWMCA_TYPE_INTEGER
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.144.0.* * * *

Remaining number of real activations
Get: Defines the number of times that real additional capacity can be activated for the record. A value of
-1 indicates that activation count is unlimited.

* Data type returned on Get: HWMCA_TYPE_INTEGER

Chapter 4. Console application managed objects 139

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.147.0.*.* * *

Remaining number of test activations
Get: Defines the number of times that test additional capacity can be activated for the record. A value of
-1 indicates that activation count is unlimited.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.9.0.148.0.*.* * *

z/VM virtual machine object

Z/VM virtual machine name bindings

z/VM virtual machine object identifier
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.x.x..*

Where x.x. equals the attribute identifier for the object and an * equals a unique number for that specific
instance of the z/VM virtual machine.

z/VM virtual machine attributes

Name
Get: This returns the name of the z/VM virtual machine object.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.1.0.%

Parent name
Get (CPC Image’s name): This returns the name of the parent CPC Image object.

* Data type returned on Get: HWMCA_TYPE_OCTETSTRING
e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.2.0.*

Status error
Get: This returns an indicator of whether the status of the z/VM virtual machine is acceptable.

* Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object is in a state which is not an acceptable status.

HWMCA_FALSE
Object is in an acceptable status state.
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.7.0.*

Busy

Get: This returns an indicator of whether the object is currently busy performing a user initiated task.
* Data type returned on Get: HWMCA_TYPE_INTEGER

HWMCA_TRUE
Object in a busy state (currently performing a task).

HWMCA_FALSE
Object not in a busy state.

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.8.0.*

140 Application Programming Interfaces

Status

Get: This returns a value representing the status of the z/VM virtual machine object.

* Data type returned on Get: HWMCA_TYPE_INTEGER

One of the following bit values will be set to on:

HWMCA_STATUS_OPERATING
HWMCA_STATUS_NOT_ACTIVATED
HWMCA_STATUS_LINKNOTACTIVE
HWMCA_STATUS_NOT_OPERATING
HWMCA_STATUS_LOGOFF_TIMEOUT
HWMCA_STATUS_FORCED_SLEEP
HWMCA_STATUS_STORAGE_EXCEEDED
HWMCA_STATUS_UNKNOWN
HWMCA_STATUS_IMAGE_NOT_OPERATING
HWMCA_STATUS_IMAGE_NOT_ACTIVATED
HWMCA_STATUS_IMAGE_NOT_CAPABLE

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.10.0.%

Acceptable status

Get: This returns a value that represents the status values that are to be considered acceptable for the

z/VM virtual machine object.

¢ Data type returned on Get: HWMCA_TYPE_INTEGER

* Data type for Set: HWMCA_TYPE_INTEGER

One or more of the following bit values will be set to on:

HWMCA_STATUS_OPERATING
HWMCA_STATUS_NOT_ACTIVATED
HWMCA_STATUS_LINKNOTACTIVE
HWMCA_STATUS_NOT_OPERATING
HWMCA_STATUS_LOGOFF_TIMEOUT
HWMCA_STATUS_FORCED_SLEEP
HWMCA_STATUS_STORAGE_EXCEEDED
HWMCA_STATUS_UNKNOWN
HWMCA_STATUS_IMAGE_NOT_OPERATING
HWMCA_STATUS_IMAGE_NOT_ACTIVATED
HWMCA_STATUS_IMAGE_NOT_CAPABLE

e SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.11.0.%

Object type

Get: This returns the type of object the z/VM virtual machine object identifier represents.
* Data type returned on Get: HWMCA_TYPE_INTEGER HWMCA_CAPACITY_RECORD
¢ SNMP MIB Name: 1.3.6.1.4.1.2.6.42.10.0.22.0.*.*

z/VM virtual machine commands

Activate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.1 (HWMCA_ACTIVATE_COMMAND)

Deactivate
SNMP MIB Name: 1.3.6.1.4.1.2.6.42.4.2 (HWMCA_DEACTIVATE_COMMAND)

Chapter 4. Console application managed objects

141

z/VM virtual machine notifications

Status change (HWMCA_EVENT_STATUS_CHANGE)
+ An HWMCA_TYPE_INTEGER that specifies the new status value.
* An HWMCA_TYPE_INTEGER that specifies the old status value.

Object created (HWMCA_EVENT_CREATED)

This event has no additional data. The object identifier can be used with the HwmcaGet to get any data
required for this newly created object.

Object destruction (HWMCA_EVENT_DESTROYED)

This event has no additional data.

Object entered an exception state (HWMCA_EVENT_EXCEPTION_STATE)

¢ An HWMCA_TYPE_INTEGER that specifies whether the object is entering into an exception state
(HWMCA_TRUE) or leaving an exception state (HWMCA_FALSE).

* An HWMCA_TYPE_INTEGER that specifies the status value for the object.

142 Application Programming Interfaces

Chapter 5. REXX management functions

ACTZSNMP

ACTZSNMP is a Dynamic Link Library (DLL) package of OS/2 REXX External Functions written in the
C language. The ACTZSNMP dynalink gives the REXX application equivalent function as an application
written in C.

Likewise, HWMCAORX is a Dynamic Link Library (DLL) package of 32- bit Windows Object REXX
External Functions written in the C language. The HWMCAORX dynalink gives the Object REXX
application equivalent function as an application written in C.

REXX initialization functions

RxHwmcaLoadFuncs
To use a REXX Management Function, you must first register the function with the REXX
RxFuncAdd function. The RxHwmcaLoadFuncs ACTZSNMP (HWMCAORX for Object REXX for
Windows) function automatically loads all the other REXX functions.

RxHwmcaDefineVars
The RxHwmcaDefineVars function can be called to define REXX variables with the same values
which exist for a C application. These variables are shown in [“Constant definitions” on page 43 .

Note: An example of these functions is shown in [“Data exchange APIs (REXX sample)” on page 167

Data exchange functions

The purpose of the REXX Data Exchange Functions is to allow REXX applications, local or remote, the
ability to exchange data related to the objects that the Console application manages. Specifically, this
support will allow REXX applications to request the Console to:

* Query (Get/Get-Next) the attributes of objects
¢ Change (Set) certain attributes of objects
* Receive notification of significant events occurring to objects

* Generate enterprise-specific Simple Network Management Protocol traps for significant events
occurring to objects.

The REXX Data Exchange Functions interface to the Data Exchange APIs, which use the Simple Network
Management Protocol (SNMP), as the transport mechanism. The attributes of objects can be
queried/changed through the underlying SNMP Set, Get, Get-Next requests, while event notification is
accomplished through the use of the enterprise-specific SNMP Trap message.

The REXX External Functions provide the REXX programmer the same capability that exists for the Data
Exchange and Commands APIs.

Specifically, the set of REXX Data Exchange Functions consists of:

RxHwmcalnitialize
Used to perform some initialization tasks necessary for the remainder of the REXX Data
Exchange Functions set and the REXX Data Command Functions.

RxHwmcaGet
Used to perform a query or Get request for a specified object or object attribute.

© Copyright IBM Corp. 2000, 2013 143

RxHwmcaGetNext
Used to perform a query-next or Get-next request for an object or object attributes that occurs
next in the lexical sequence of objects managed by the Console.

RxHwmcaSet
Used to perform a change or Set request for a specified object attribute.

RxHwmcaWaitEvent
Used to wait for a specified period of time (or forever) for an event notification.

RxHwmcaTerminate
Used to perform any cleanup tasks required by any of the other APIs in the set.

RxHwmcaBuildld
A convenience routine that can be used to construct an object identifier for any object supported
by the Console.

RxHwmcaBuildAttributeld
A convenience routine that can be used to construct an attribute object identifier for any object
supported by the Console, based on the object identifier of the object itself.

Refer to the following pages for detailed information about these functions.

RxHwmcalnitialize
Used to perform any initialization tasks required in order for the remainder of the functions to operate
correctly. The parameters required for this function are:

INITVAR
Is REQUIRED to be present and MUST be coded as a stem variable. This variable defines all the
information that is required for the Data Exchange APIs to perform the initialization request. The
following tail parts of the stem variable must be initialized before the RxHwmcalnitialize function
is called:

INITVAR. TARGET
Must contain the host name or internet address for the target Data Exchange APIs.

INITVAR.COMMUNITY
The community name that is to be used for SNMP request made to the target Console.
(Refer to [Chapter 6, “Configuring for the data exchange APIs,” on page 191| for more
information regarding the community name used in SNMP requests.)

INITVAR.EVENTMASK
If you are going to be using the RxHwmcaWaitEvent call, the EVENTMASK tail should
contain one or more of the events defined in “Hwmcalnitialize” on page E

Note: Care should be used when trying to use the same INITVAR stem variable for
RxHwmcaWaitEvent calls in addition to the rest of the APIs in the set. Events associated
with a particular INITVAR stem variable will be queued until retrieved with
RxHwmcaWaitEvent or until another API, such as RxHwmcaGet, is called. Therefore,
making calls, such as RxHwmcaGet, will cause any queued events to be discarded and
lost.

When both RxHwmcaWaitEvent and other calls need to be made, an application should
perform two RxHwmcalnitialize calls using two distinct INITVAR stem variables. The
application can then use one of the INITVAR stem variables for only RxHwmcaWaitEvent
calls and the other INITVAR stem variable for the other API calls.

INITVAR.RESERVED
A reserved field and must be set to zero for the RxHwmcalnitialize function if the
HWMCA_QUALIFIER_SPECIFIED event mask flag is not specified n the
INITVAR.EVENTMASK field. If the HWMCA_QUALIFIER_SPECIFIED event mask flag
is specified, then this field should contain the name of a stem variable, such as

144 Application Programming Interfaces

'QUALDATA., that provides additional event qualification information. This stem
variable should be specified in the following manner.

QUALDATA.0
Contains the number of event qualification information provided in the event
qualification stem variable.

QUALDATA.n.MASK
This field should be set to the event mask flag that is being qualified. Only one
event mask flag should be specified in this field. For example,
HWMCA_EVENT_OPSYS_MESSAGE should be specified when qualifying
operating system message event notifications.

QUALDATA.n.TYPE
This field is used to indicate the type of event qualification information being
provided. The following event qualification types are currently supported.

HWMCA_QUALIFIER_TYPE_NAME
This value is used to indicate that the event qualification data is the null
terminated name of the managed object, which is specified in the
QUALDATA.n.DATA variable. Event qualification information that
specifies this event qualification type can be used to limit event
notifications for the specified event mask to those associated with a
managed object with the specified name.

After a successful call to the RxHwmcalnitialize function this field should not be altered in any
way. If the same stem variable is reused for another RxHwmicalnitialize call after the
RxHwmcaTerminate call has been made, this field must be reset appropriately.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcalnitialize to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmecalnitialize call returns a return code value to the REXX application. This return code lets the
REXX application know if the initialization request was successfully delivered and processed by the
Hardware Management Console Application. A value defined by variable HWMCA_DE_NO_ERROR
indicates successful completion.

The stem variable defined for the RxHwmcalnitialize call should be left alone and other information will
be added by the RxHwmcalnitialize function. It is important that this information be left intact and
accessible, since it must be passed as a parameter on almost all of the calls.

RxHwmcaGet
Used to retrieve data associated with a specific object attribute. The parameters required for this call are:

INITVAR
The stem variable that was used on the RxHwmecalnitialize call.

OBJECTID
The object ID variable for which the data is to be retrieved. Refer to [Chapter 4, “Console|
lapplication managed objects,” on page 75| for more information about the object identifiers that
the Console manages.

OUTPUT
Defines the stem variable which will contain the actual information returned by RxHwmcaGet
API This parameter MUST be a stem variable and the information returned will be as follows:

OUTPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

Chapter 5. REXX management functions 145

OUTPUT.n.TYPE
Contains a value which defines the type of data contained in the DATA tail variable.
Possible values are:

HWMCA_TYPE_INTEGER
Represents a number value.

HWMCA_TYPE_OCTETSTRING
Represents a string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit Internet address in host byte order.

OUTPUT.n.DATA
Contains the actual data of the above type.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the RxHwmcaGet
to complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

The RxHwmcaGet call returns a return code value to the REXX application. This return code lets the REXX
application know if the get request was successfully delivered and processed by the Console application.
A value defined by variable HWMCA_DE_NO_ERROR indicates successful completion.

RxHwmcaGetNext

Used to retrieve the data associated with the object attribute that occurs next in the lexical sequence of

objects, based on a specified object identifier. The parameters specified for the call are identical to those

specified for the RxHwmcaGet call with two subtle differences.

1. The meaning of the OBJECTID variable is used as the base for the Get-Next operation, as opposed to
having its object data retrieved.

2. Two pairs of TYPE and DATA variables will be returned in the output stem variable. The first is the
object identifier string for the object whose data is being returned and the second is for the data itself.

RxHwmcaSet
The RxHwmecaSet call is used to change or set the data associated with a specific object attribute. The
parameters specified for the call are:

INITVAR
The stem variable that was used on the RxHwmecalnitialize call.

OBJECTID
Object identifier variable for which the data is to be set. Refer to [Chapter 4, “Console application|
Imanaged objects,” on page 75| for more information about the object identifiers that the Console
manages.

DATATYPE
Type of data represented by the Data parameter. Possible values are represented by the variables
HWMCA_TYPE_INTEGER and HWMCA_TYPE_OCTETSTRING.

DATA Actual data that will be set in the object defined by OBJECTID. Refer to [Chapter 4, “Consolé|
lapplication managed objects,” on page 75| for more information about the object identifiers that
the Console manages.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the RxHwmcaSet
to complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT
can be used to cause the application to wait forever.

146 Application Programming Interfaces

RxHwmcaWaitEvent

Used to wait for event notification for objects managed by the Console Application. The REXX
application specifies the events that it wants to receive through the use of the EVENTMASK tail variable
in the INITVAR variable. The parameters specified for this call are:

INITVAR
The stem variable that was used on the RxHwmcalnitialize call.

OUTPUT
Defines the stem variable which will contain the actual information returned by
RxHwmcaWaitEvent function. This parameter MUST be a stem variable and the information
returned will be as follows:

OUTPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

OUTPUT.n.TYPE
Contains a value which defines the type of data contained in the DATA tail variable.
Possible values are:

HWMCA_TYPE_INTEGER
Represents a number value.

HWMCA_TYPE_OCTESTRING
Represents a string value.

HWMCA_TYPE_NULL
Used to denote that no value is present.

HWMCA_TYPE_IPADDRESS
Represents a 32- bit internet address in host byte order.

OUTPUT.n.DATA
Contains the actual data of the above type.

TIMEOUT
Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcaWaitEvent to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmcaWaitEvent function returns a return code value to the REXX application. This return
code lets the REXX application know if any errors occurred while waiting for the event
notification. A value of HWMCA_DE_NO_ERROR indicates successful completion. A value of
HWMCA_DE_TIMEOUT indicates that no event notifications were present in the specified
timeout period.

On successful completion of the RxHwmcaWaitEvent function, the stem variable OUTPUT is
populated with a series of one or more occurrences of the TYPE and DATA tail variables.

* An OUTPUT.1.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.1.DATA that specifies
the object identifier of the object that the event notification pertains to,

* An OUTPUT.2.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.2.DATA that specifies
the event notification type for this event, and

* Any additional data for the event notification type, as specified below.
The additional data for each of the event notification types are:
HWMCA_EVENT_COMMAND_RESPONSE

Used to notify the REXX application of completion information for a command that has been
initiated through the use of the REXX Command function.

The additional data for this event consists of six occurrences of the OUTPUT stem variable
TYPE\DATA pair that describe the following:

Chapter 5. REXX management functions 147

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the command completed attribute of the target object for which this
command response event has been generated.

2. An OUTPUTA.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.4.DATA that specifies
the object identifier of the command for which this command response event has been
generated.

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the command return code attribute of the target object for which this
command response event has been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the return code value to be used to determine the success or failure of the command request
that is associated with this command response event.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that specifies
the object identifier of the last command response attribute of the target object for which this
command response event has been generated.

6. An OUTPUT.8.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.8.DATA that specifies
whether or not this is the last HWMCA_EVENT_COMMAND_RESPONSE event that will be
issued for this command. A DATA value of HWMCA_TRUE indicates this event as the last,
while a value of HWMCA_FALSE indicates that more
HWMCA_EVENT_COMMAND_RESPONSE events will be forthcoming.

7. An OUTPUT.9.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.9.DATA that
specifies the name of the object that is associated with this command response event.

8. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the command correlator.

Note: This field will only be present if the command was invoked with a correlator specified.
HWMCA_EVENT_MESSAGE

Used to notify the REXX application that an object managed by the Console has a new or
refreshed message. This event is generated only for the base objects and not for copies of objects
within user defined groups.

This event is returned to the application when any combination of the following values is used in
the EVENTMASK tail of the INITVAR parameter of the RxHwmcalnitialize call:

*+ HWMCA_EVENT_MESSAGE

+ HWMCA_EVENT_HARDWARE_MESSAGE

+ HWMCA_EVENT_OPSYS_MESSAGE

If the HWMCA_EVENT_MESSAGE value is specified in the EVENTMASK tail of the INITVAR
parameter, then the application will be notified of both hardware and operating system message
events.

If only the HWMCA_EVENT_HARDWARE_MESSAGE or
HWMCA_EVENT_OPSYS_MESSAGE value is specified in the EVENTMASK tail of the
INITVAR parameter, then the application will be notified only of hardware or operating system
message events, respectively.

In addition, the HWMCA_EVENT_NO_REFRESH_MESSAGE value can be specified in
conjunction with the above values to control whether or not the application should be notified of
HWMCA_EVENT_MESSAGE events for refreshed messages. If the
HWMCA_EVENT_NO_REFRESH_MESSAGE value is specified in the EVENTMASK field of the
INITVAR parameter, then the application will not be notified of HWMCA_EVENT_MESSAGE
events for refreshed messages.

The additional data for this event can take on two different formats. The format being received
can be determined through examining the OUTPUT.4.TYPE/DATA pair. The remaining object
identifier /value pairs for each of the two formats follows:

148 Application Programming Interfaces

1.

An OUTPUT.3.TYPE: of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the message type attribute of the object for which this message event
has been generated.

An OUTPUTA4.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies

whether the message is a hardware or operating system message

(HWMCA_HARDWARE_MESSAGE or HWMCA_OPSYS_MESSAGE)

The remaining OUTPUT.n.TYPE/DATA for hardware messages

(HWMCA_HARDWARE_MESSAGE) is:

a. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that
specifies the object identifier of the message text attribute of the object for which this
message event has been generated.

b. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and a OUTPUT.6.DATA that
specifies the new or refreshed hardware message text.

c. An OUTPUT.7Z.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that
specifies the object identifier of the message refresh attribute of the object for which this
message event has been generated.

d. An OUTPUT.8.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.8.DATA that
specifies whether the message is a new (HWMCA_FALSE) or refresh message

(HWMCA_TRUE).

e. An OUTPUT.9.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.9.DATA that
specifies the time stamp of the new or refreshed hardware message.

f. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the names of the CPC Image object(s) associated with the object that generated the
new or refreshed hardware message. This HWMCA_TYPE_OCTETSTRING is a null
terminated, blank delimited list of the CPC Image name(s).

When receiving this event from a Support Element Console, this value contains the name(s)
of the CPC Images that are running on the CPC that the Support Element Console is
controlling.

When receiving this event from a Hardware Management Console, this value:

¢ Contains no CPC Image names for hardware messages for the Hardware Management
Console itself

* Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware
message pertains to.

g. An OUTPUT.11.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.11.DATA
that specifies the name of the object that is associated with this event.

The remaining OUTPUT.n.TYPE/DATA for operating system messages

(HWMCA_OPSYS_MESSAGE) are:

a. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that
specifies the object identifier of the message text attribute of the object for which this
message event has been generated.

b. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the new or refreshed operating system message text.

Note: If the operating system message text contains multiple lines, then each additional
line is delimited from the next line with the character sequence of a carriage return (\r)
and a new line (\n).

c. An OUTPUT.7Z.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.7.DATA that
specifies the object identifier of the message identifier attribute of the object for which this
message event has been generated.

Chapter 5. REXX management functions 149

d. An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that
specifies the message identifier of the new operating system message.

e. An OUTPUT.9.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.9.DATA that
specifies the object identifier of the message date attribute of the object for which this
message event has been generated.

f. An OUTPUT.10.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.10.DATA that
specifies the date of the new operating system message.

g. An OUTPUT.11.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.11.DATA that
specifies the object identifier of the message time attribute of the object for which this
message event has been generated

h. An OUTPUT.12.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.12.DATA
that specifies the time of the new operating system message.

i. An OUTPUT.13.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.13.DATA that
specifies the object identifier of the message alarm attribute of the object for which this
message event has been generated.

j. An OUTPUT.14.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.14.DATA that
specifies whether the new operating system message should cause the alarm to be sounded
(HWMCA_TRUE or HWMCA_FALSE).

k. An OUTPUT.15.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.15.DATA that
specifies the object identifier of the message priority attribute of the object for which this
message event has been generated.

. An OUTPUT.16.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.16.DATA that
specifies whether the new operating system message is a priority message or not
(HWMCA_TRUE or HWMCA_FALSE).

m. An OUTPUT.17.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.17.DATA that
specifies the object identifier of the message held attribute of the object for which this
message event has been generated.

n. An OUTPUT.18.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.18.DATA that
specifies whether the new operating system message is a held message or not
(HWMCA_TRUE or HWMCA _FALSE).

0. An OUTPUT.19.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.19.DATA that
specifies the object identifier of the message prompt text attribute of the object for which
this message event has been generated.

p. An OUTPUT.20.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.20.DATA
that specifies the prompt text that should be associated with the new operating system

message or an HWMCA_TYPE_NULL indicating that there is no prompt text for this new
operating system message.

g. An OUTPUT.2L.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.21.DATA that
specifies the object identifier of the message operating system name attribute of the object
for which this message event has been generated.

r. An OUTPUT.22.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.22.DATA that
specifies the operating system name that should be associated with the new operating
system message or an HWMCA_TYPE_NULL indicating that there is no operating system
name for this new operating system message.

s. An OUTPUT.23.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.23.DATA that
specifies the object identifier of the message refresh attribute of the object for which this
message event has been generated.

t. An OUTPUT.24.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.24.DATA that
specifies whether the message is a new (HWMCA_FALSE) or refresh message
(HWMCA_TRUE).

u. An OUTPUT.25.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.25.DATA
that specifies the name of the object that is associated with this event.

150 Application Programming Interfaces

HWMCA_EVENT_STATUS_CHANGE

Used to notify the REXX application that an object managed by the Console has changed status.
This event is generated only for the base objects and not for copies of objects within user defined
groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the status attribute of the object for which this status change event has
been generated.

2. An OUTPUTA.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies
the new status value, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the status attribute of the object for which this status change event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the old status value.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_NAME_CHANGE

Used to notify the REXX application that an object managed by the Console has had a name
change. This event notification can be useful when a REXX application retains the object
identifiers for objects it is interested in, since the name of an object is used to build the unique
portion of the object identifier. This event is generated only for the base objects and not for copies
of objects within user-defined groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the name attribute of the object for which this name change event has
been generated.

2. An OUTPUTA.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the new object name, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the name attribute of the object for which this name change event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the old object name.

HWMCA_EVENT_ACTIVATE_PROF_CHANGE

Used to notify the REXX application that an object managed by the Console has changed which
activation profile is associated with it.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the activation profile attribute of the object for which this activation
profile change event has been generated.

2. An OUTPUTA.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the new activation profile name, and

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the activation profile attribute of the object for which this activation
profile change event has been generated.

Chapter 5. REXX management functions 151

4. An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the old activation profile name.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_CREATED

Used to notify the REXX application that a new object managed by the Console has been defined
or instantiated.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_DESTROYED
Used to notify the REXX application that an object managed by the Console has been undefined.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_EXCEPTION_STATE

Used to notify the REXX application that an object managed by the Console has either entered
into or out of an exception state. An object is considered in an exception state when its status is
not considered acceptable as defined by the object’s acceptable status attribute. This event is
generated only for the base objects and not for copies of objects within user-defined groups.

The additional data for this event consists of four OUTPUT stem variable TYPE/DATA pairs that
describe the following:

1. An OUTPUT.3.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.3.DATA that specifies
the object identifier of the status error attribute of the object for which this exception state
event has been generated.

2. An OUTPUTA4.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.4.DATA that specifies
whether the object is entering into an exception state (HWMCA_TRUE) or leaving an
exception state (HWMCA_FALSE).

3. An OUTPUT.5.TYPE of HWMCA_TYPE_OBJECTID and an OUTPUT.5.DATA that specifies
the object identifier of the status attribute of the object for which this exception state event has
been generated.

4. An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA that specifies
the status value for the object.

5. An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_ENDED
Used to notify the REXX application that the Console application is ending.

The additional data for this event consists of a single OUTPUT stem variable TYPE/DATA pair
that has an OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_HARDWARE_MESSAGE_DELETE

Used to notify the REXX application that a hardware message associated with an object managed
by the Console application or the Console application itself has been deleted. This event is
generated only for the base objects and not for copies of objects within user-defined groups.

The additional data for this event consists of five OUTPUT stem variable TYPE/DATA pairs that
describe the following:

152 Application Programming Interfaces

. An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies

that the message being deleted is a hardware message (HWMCA_HARDWARE_MESSAGE).

An OUTPUTA4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the message text for the hardware message being deleted.

An OUTPUT.5.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.5.DATA that is always
set to HWMCA_FALSE for this event.

An OUTPUT.6.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.6.DATA that
specifies the time stamp of the hardware message being deleted.

An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA that
specifies the names of the CPC Image object(s) associated with the object for which the
hardware message is being deleted. This HWMCA_TYPE_OCTETSTRING is a null
terminated, blank delimited list of the CPC Image name(s).

When receiving this event from a Support Element Console, this value contains the name(s) of
the CPC Images that are running on the CPC that the Support Element Console is controlling.

When receiving this event from a Hardware Management Console, this value:

* Contains no CPC Image names for hardware messages for the Hardware Management
Console itself

* Contains no CPC Image names for Optical Network related hardware messages

* Contains the name(s) of the CPC Images that are running on the CPC that the hardware
message pertains to.

An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_SECURITY_EVENT

Used to notify the REXX application that a security event has been logged.

The additional data for this event consists of three OUTPUT stem variable TYPE/DATA pairs that
describes the following:

1.

An OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA that
specifies the time stamp of the security log.

. An OUTPUTA.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that

specifies the text of the security log.

An OUTPUT.5.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.5.DATA that
specifies the name of the object that is associated with this event.

HWMCA_EVENT_CAPACITY_CHANGE

Used to notify the REXX application that the processing capacity for a Defined CPC object has
changed in some manner. The additional data for this event consists of two OUTPUT stem
variable TYPE/DATA pairs that describe the following:

1.

An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies the
type of capacity change that occurred, using one of the following constants:

* HWMCA_CAPACITY_FENCED_BOOK A processor book has been fenced and is not longer
usable.

» HWMCA_CAPACITY_DEFECTIVE_PROCESSOR A processor has become defective.

* HWMCA_CAPACITY_CONCURRENT_BOOK_REPLACE A concurrent processor book
replacement has been performed.

* HWMCA_CAPACITY_CONCURRENT_BOOK_ADD A concurrent processor book addition
has been performed.

* HWMCA_CAPACITY_CHECK_STOP A processor has gone into a check stopped state.

* HWMCA_CAPACITY_CHANGES_ALLOWED A user has configured the APIs to be
allowed to perform capacity changes.

Chapter 5. REXX management functions 153

2.

« HWMCA_CAPACITY_CHANGES_NOT_ALLOWED A user has configured the APIs to no
longer be allowed to perform capacity changes.

An OUTPUT4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA that
specifies the name of the object that the event pertains to (in this case a Defined CPC object).

HWMCA_EVENT_CAPACITY_RECORD_CHANGE

Used to notify the REXX application that a change has occurred to a temporary capacity record.
The additional data for this event consists of three OUTPUT stem variable TYPE/DATA pairs that
describe the following:

1.

An OUTPUT.3.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.3.DATA that specifies the
type of capacity record change that occurred, using one of the following constants:

« HWMCA_CAPACITY_RECORD_ADD The capacity record has been added to the machine.
* HWMCA_CAPACITY_RECORD_DELTA The capacity record has been modified.

« HWMCA_CAPACITY_RECORD_DELETE The capacity record has been deleted.

« HWMCA_CAPACITY_RECORD_ACCOUNTING

« HWMCA_CAPACITY_ACTIVATION_LEVEL The capacity record has changed it's level of
activation (either more resources from this record have been added or removed from the
machine).

« HWMCA_CAPACITY_PRIORITY_PENDING Additional capacity has been added for the
capacity record, with priority, but not enough resources were available to allow for all the
capacity specified to be put into effect. As resources become available they will be added
for this record in order to completely satisfy the original request for additional capacity.

« HWMCA_CAPACITY_RECORD_OTHERThe capacity record has changed in some other
manner.

An OUTPUT4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA for the

temporary capacity record that has changed.

An OUTPUT.S.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.5.DATA that

specifies the name of the object that the event pertains to (in this case a Defined CPC object).

HWMCA_EVENT_DISABLED_WAIT

Used to notify the REXX application that a CPC Image object has entered a disabled wait state.
The additional data for this event consists of six OUTPUT stem variable TYPE/DATA pairs that

describe the following:

1.

TIMEOUT

An OUTPUT.3.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.3.DATA for the
name of the Defined CPC that is associated with the CPC Image that entered a disabled wait
state.

An OUTPUT4.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.4.DATA for the
disabled wait PSW value.

An OUTPUT.S.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.5.DATA for the partition
identifier of the CPC Image that entered a disabled wait state.

An OUTPUT.6.TYPE of HWMCA_TYPE_INTEGER and an OUTPUT.6.DATA for number of
the processor that entered a disabled wait state.

An OUTPUT.7.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.7.DATA for the
serial number of the Defined CPC that is associated with the CPC Image that entered a
disabled wait state.

An OUTPUT.8.TYPE of HWMCA_TYPE_OCTETSTRING and an OUTPUT.8.DATA that
specifies the name of the object that the event pertains to (in this case a CPC Image object).

Used to specify the amount of time that the REXX application waits for the RxHwmcaWaitEvent to
complete. This value is specified in milliseconds and the variable HWMCA_INFINITE_WAIT can
be used to cause the application to wait forever.

154 Application Programming Interfaces

RxHwmcaTerminate
Used to perform any cleanup tasks required by any of the other REXX Data Exchange and Command
functions. The parameters required for this function are:

INITVAR
This parameter is the stem variable that was used on the RxHwmcalnitialize call.

TIMEOUT
This parameter is used to specify the amount of time that the REXX application wants to wait for
the RxHwmcaTlerminate to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

The RxHwmcaTerminate call returns a return code value to the REXX application. This return code lets the
REXX application know if the termination request was successfully delivered and processed by the
Console application. A value defined by variable HWMCA_DE_NO_ERROR indicates successful
completion.

Once the RxHwmcaTerminate has successfully been called, the stem variable INITVAR, can be used for
other purposes.

RxHwmcaBuildid

A convenience routine provided to aid the application program in constructing an object identifier for any
object supported by the Console. The arguments specified for this API are:

BUFFER
A variable where the built object identifier string is to be placed.

PREFIX
The prefix string to be used for the object identifier to be built. Any of the valid prefixes defined
by the RxHwmecaDefineVars call can be used, such as:
« HWMCA_CONSOLE_ID
* HWMCA_CFG_CPC_GROUP_ID
* HWMCA_CFG_CPC_ID
+ HWMCA_CPC_IMAGE_GROUP_ID
+ HWMCA_CPC_IMAGE_ID
+ HWMCA_GROUPS_GROUP_ID
+ HWMCA_GROUPS_OBJECT_ID
+ HWMCA_COMMAND_PREFIX
« HWMCA_ACT_RESET_OBJECT_ID
« HWMCA_ACT_IMAGE_OBJECT_ID
* HWMCA_ACT_LOAD_OBJECT_ID
+ HWMCA_ACT_GROUP_OBJECT_ID
+ HWMCA_CAPACITY_RECORD_OBJECT_ID
+ HWMCA_CFG_VM_GROUP_ID
+ HWMCA_VM_OBJECT_ID

ATTRIBUTE
The attribute suffix string to be used for the object identifier to be built. This can be omitted
when building an identifier for an object itself, as opposed to an attribute object identifier.

GROUPNAME
The group name to be used for building the object identifier. This can be omitted when building
an object identifier for a predefined group or an object contained in a predefined group.

OBJECTNAME
The object name to be used for building the object identifier. This can be omitted when building
an object identifier for a group object.

Chapter 5. REXX management functions 155

Note: Refer to[“Console application object identifier conventions” on page 75 for more information about
the conventions used for the object identifiers for objects managed by the Console.

RxHwmcaBuildAttributeld

A convenience routine provided to aid the REXX programmer in constructing an attribute object identifier
for any object supported by the Console, based on the object identifier of the object itself. The parameters
specified for this API are:

BUFFER
A variable where the built object identifier string is to be placed.

OBJECTID
The object identifier of the object for which the attribute identifier is to be built.

ATTRIBUTE
The attribute suffix string to be used for the object identifier to be built.

Note: Refer to[|“Console application object identifier conventions” on page 75 for more information about
the conventions used for the object identifiers for objects managed by the Console.

Commands API

RxHwmcaCommand
Used to perform a command against a specific object managed by the Console Application. The
parameters specified for the call are:

INITVAR
The stem variable that was used on the RxHwmcalnitialize call.

OBJECTID
The object identifier variable for which the data is to be retrieved.

COMMANDID
A variable containing the command that is to be executed. Valid values for this argument are:
+ HWMCA_ACTIVATE_COMMAND
+ HWMCA_DEACTIVATE_COMMAND
+ HWMCA_SEND_OPSYS_COMMAND
+ HWMCA_RESETNORMAL_COMMAND
+ HWMCA_START_COMMAND
« HWMCA_STOP_COMMAND
« HWMCA_PSWRESTART_COMMAND
+ HWMCA_LOAD_COMMAND
+ HWMCA_HW_MESSAGE_REFRESH_COMMAND
*+ HWMCA_RESETCLEAR_COMMAND
+ HWMCA_HW_MESSAGE_DELETE_COMMAND
+ HWMCA_ACTIVATE_CBU_COMMAND
* HWMCA_UNDO_CBU_COMMAND
+ HWMCA_IMPORT_PROFILE_ COMMAND
+ HWMCA_EXPORT_PROFILE_COMMAND
« HWMCA_RESERVE_COMMAND
+ HWMCA_EXTERNAL_INTERRUPT_COMMAND
+ HWMCA_SCSI_LOAD_COMMAND
+ HWMCA_SCSI_DUMP_COMMAND
+ HWMCA_SHUTDOWN_RESTART_COMMAND
* HWMCA_ACTIVATE_OOCOD_COMMAND
+ HWMCA_UNDO_OOCOD_COMMAND
+ HWMCA_ADD_CAPACITY_COMMAND
* HWMCA_REMOVE_CAPACITY_COMMAND
« HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND

156 Application Programming Interfaces

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_COMMAND
HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND

CMDINPUT

Defines the stem variable that contains the actual command used to represent the arguments to
be passed to the specified command.

CMDINPUT.0
Contains the number of occurrences of the TYPE and DATA tail variables.

CMDINPUT.n.TYPE

Contains a value which defines the type of data contained in the DATA tail variable.

CMDINPUT.n.DATA

Contains the actual data of the above type.
The acceptable and required arguments for each command are as follows:

HWMCA_ACTIVATE_COMMAND

No arguments are required, but the following arguments can optionally be
specified:

Activation profile name
Name of the activation profile to be used for the Activate command. The
default is to use the profile name specified in the Activation profile name
attribute for the specified object.

Force indicator
An indicator used to request conditional processing of the Activate
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Either one or both of these arguments can be specified, meaning the
CMDINPUT.0 can be 0 - 2; however, they must be specified in the order shown
by the preceding list. If an argument is not specified, then the default for that
argument is used. In order to specify an argument, such that the default will be
used, the TYPE tail variable should be set to HWMCA_TYPE_NULL and the
DATA tail variable should be set to the null string (for example, ").

The default for any argument can be overridden by specifying the TYPE and
DATA tail variables as follows:

Activation profile name

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the Activation profile name.

Force indicator

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.2.DATA
Should contain HWMCA_TRUE for the command to be performed
unconditionally or HWMCA_FALSE for the command to be performed
conditionally.

Chapter 5. REXX management functions 157

HWMCA_DEACTIVATE_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE for
the command to be performed unconditionally or HWMCA_FALSE for the
command to be performed conditionally.

HWMCA_RESETNORMAL_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE for
the command to be performed unconditionally or HWMCA_FALSE for the
command to be performed conditionally.

HWMCA_RESETCLEAR_COMMAND
No arguments are required, but optionally a Force indicator can be specified. If
this argument is not specified, then the default is to unconditionally perform the
command. This implies that CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMINPUT.1.DATA variable should contain the value HWMCA_TRUE for the
command to be performed unconditionally or HWMCA_FALSE for the command
to be performed conditionally.

HWMCA_START_COMMAND
No arguments are accepted or required.

HWMCA_STOP_COMMAND
No arguments are accepted or required.

HWMCA_PSWRESTART_COMMAND
No arguments are accepted or required.

HWMCA_SEND_OPSYS_COMMAND
This command requires two arguments. The first is an indication of whether this
is a priority operating system command and the second is the text of the
operating system command. This implies that the CMDINPUT.0 variable should
contain a 2. The first CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
HWMCA_TRUE for priority operating system commands or HWMCA_FALSE
for non-priority operating system commands. The second CMDINPUT.2.TYPE
variable should be set to HWMCA_TYPE_OCTETSTRING and the
CMDINPUT.2.DATA variable should contain the operating system command
itself.

HWMCA_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be
specified:
Load address
Hexadecimal address to be used when performing the Load. The default

will be to use the Load address last used when a Load was performed for
the object.

158 Application Programming Interfaces

Load parameter
Parameter string to be used when performing the Load. The default will
be to use the Load parameter last used when a Load was performed for
the object.

Clear indicator
Whether or not memory should be cleared before performing the Load.
The default is to clear memory before performing the Load.

Timeout
Amount of time (in seconds) to wait for the Load to complete. The
default timeout is 60 seconds.

Store status indicator
Whether or not status should be stored before performing the Load. The
default is not to store status before performing the Load.

Force indicator
An indicator used to request conditional processing of the Load
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.0 can be 0
- 6; however, they must be specified in the order shown by the preceding list. If
an argument is not specified, then the default for that argument is used. In order
to specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, ").

The default for any argument can be overridden by specifying the TYPE and
DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the Load.
This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
Load. This string must be less than or equal to 8 characters in length.

Clear indicator

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.3.DATA
Should contain the value HWMCA_TRUE for memory to be cleared
before performing the Load or HWMCA_FALSE to bypass the clearing of
memory before performing the Load.

Timeout

Chapter 5. REXX management functions 159

CMDINPUTA4.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.4.DATA
Should contain the timeout value that is to be used when performing the
Load. This value must be 60 - 600 seconds.

Store status indicator

CMDINPUT.5.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.5.DATA
Should contain the value HWMCA_TRUE for status to be stored before
performing the Load or HWMCA_FALSE to bypass the storing of status
before performing the Load.

Force indicator

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.6.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally.

HWMCA_HW_MESSAGE_REFRESH_COMMAND
No arguments are accepted or required.

HWMCA_HW_MESSAGE_DELETE_COMMAND
This command requires one argument, which is the time stamp of the hardware
message. This implies that the CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_OCTETSTRING
and the CMDINPUT.1.DATA variable should contain the hardware message time
stamp string itself.

HWMCA_ACTIVATE_CBU_COMMAND
This command requires one argument, which is an indicator of whether a real or
test CBU activation should be performed. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
the value HWMCA_TRUE for a real CBU activation or HWMCA_FALSE for a test
CBU activation. A second, optional, parameter for the password used to validate
the CBU activation can be specified with a CMDINPUT.2.TYPE set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.2.DATA variable set to the
desired password. If not specified, the password will be obtained automatically
from the IBM support system.

HWMCA_UNDO_CBU_COMMAND
No arguments are accepted or required.

HWMCA_IMPORT_PROFILE_COMMAND
This command requires one argument, which is the profile area to be imported.
This implies that the CMDINPUT.0 variable should contain a 1. The
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain an integer value greater than or
equal to 1 or less than or equal to 4, indicating the profile area to be imported.

HWMCA_EXPORT_PROFILE_COMMAND
This command requires one argument, which is the profile area to be exported.
This implies that the CMDINPUT.0 variable should contain a 1. The

160 Application Programming Interfaces

CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain an integer value greater than or
equal to 1 or less than or equal to 4, indicating the profile area to be exported.

HWMCA_RESERVE_COMMAND

Note: This command is available only on a Support Element console.

This command requires two arguments. The first is the request/release indicator
and the second is the name of the application requesting the reserve (exclusive
control). This implies that the CMDINPUT.0 variable should contain a 2. The first
CMDINPUT.1.TYPE variable should be set to HWMCA_TYPE_INTEGER and
the CMDINPUT.1.DATA variable should contain the value HWMCA_TRUE
when requesting the reserve or HWMCA_FALSE when releasing the reserve. The
second CMDINPUT.2.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.2.DATA variable should
contain the application name. This length of the application name must be less
than or equal to 8.

HWMCA_EXTERNAL_INTERRUPT_COMMAND
This command requires one argument, which is the number of the processor that
is the target of the external interrupt command. This implies that the
CMDINPUT.0 variable should contain a 1. The CMDINPUT.1.TYPE variable
should be set to HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA.
variable should contain the processor number. This number is between 0 and the
maximum number of processors for the target CPC image object.

HWMCA_SCSI_LOAD_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Load address
Hexadecimal address to be used when performing the SCSI Load. The
default will be to use the Load address last used when a SCSI Load was
performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Load. The default
will be to use the Load parameter last used when a SCSI Load was
performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Load. The
default will be to use the worldwide port name last used when a SCSI
Load was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Load. The default
will be to use the logical unit number last used when a SCSI Load was
performed for the object.

Boot Program Selector
The boot program selector to be used for the SCSI Load. The default will
be to use the boot program selector last used when a SCSI Load was
performed for the object.

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI
Load. The default will be to use the operating system specific load
parameters last used when a SCSI Load was performed for the object.

Chapter 5. REXX management functions 161

Boot record logical block address
The boot record logical block address to be used for the SCSI Load. The
default will be to use the boot record logical block address last used
when a SCSI Load was performed for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Load
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.O can be 0 -
8; however, they must be specified in the order shown by the preceding list. If an
argument is not specified, then the default for that argument is used. In order to
specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, ""). The default for any argument can be
overridden by specifying the TYPE and DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the SCSI
Load. This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
SCSI Load. This string must have a length of eight characters or less.

Worldwide port name

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should contain the worldwide port name string to be used when
performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Logical unit number

CMDINPUTA.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.4.DATA
Should contain the logical unit number string to be used when
performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Disk Partition Identifier

CMDINPUT.5. TYPE
Should be set to HWMCA_TYPE_INTEGER.

162 Application Programming Interfaces

CMDINPUT.5.DATA
Should contain the boot program selector value, which can be in the
range 0 - 30, inclusive.

Operating system specific load parameters

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.6.DATA
Should contain the operating system specific parameters string to be used
when performing the SCSI Load. This string must be 256 characters or
less.

Boot record logical block address

CMDINPUT.7.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.7.DATA
Should contain the boot record logical block address string to be used
when performing the SCSI Load. This string must consist of 16 or less
hexadecimal characters.

Force indicator

CMDINPUT.8.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.8.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

HWMCA_SCSI_DUMP_COMMAND
No arguments are required, but the following arguments can optionally be
specified:

Load address
Hexadecimal address to be used when performing the SCSI Dump. The
default will be to use the Load address last used when a SCSI Dump was
performed for the object.

Load parameter
Parameter string to be used when performing the SCSI Dump. The
default will be to use the Load parameter last used when a SCSI Dump
was performed for the object.

Worldwide port name
The worldwide port name (WWPN) to be used for the SCSI Dump. The
default will be to use the worldwide port name last used when a SCSI
Dump was performed for the object.

Logical unit number
The logical unit number (LUN) to be used for the SCSI Dump. The
default will be to use the logical unit number last used when a SCSI
Dump was performed for the object.

Boot Program Selector
The boot program selector to be used for the SCSI Dump. The default
will be to use the boot program selector last used when a SCSI Dump
was performed for the object.

Chapter 5. REXX management functions 163

Operating system specific load parameters
The operating system specific load parameters to be used for the SCSI
Dump. The default will be to use the operating system specific load
parameters last used when a SCSI Dump was performed for the object.

Boot record logical block address
The boot record logical block address to be used for the SCSI Dump. The
default will be to use the boot record logical block address last used
when a SCSI Dump was performed for the object.

Force indicator
An indicator used to request conditional processing of the SCSI Dump
command depending on the state of the target object. The default is to
unconditionally perform the command (that is, FORCE=TRUE) no matter
what the state of the target object is.

Any number of arguments can be specified, meaning the CMDINPUT.0 can be O -
8; however, they must be specified in the order shown by the preceding list. If an
argument is not specified, then the default for that argument is used. In order to
specify an argument such that the default will be used, the TYPE tail variable
should be set to HWMCA_TYPE_NULL and the DATA tail variable should be set
to the null string (for example, ""). The default for any argument can be
overridden by specifying the TYPE and DATA tail variables as follows:

Load address

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain the address string to be used when performing the SCSI
Dump. This string must consist of 4 or less hexadecimal characters.

Load parameter

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.2.DATA
Should contain the parameter string to be used when performing the
SCSI Dump. This string must have a length of 8 characters or less.

Worldwide port name

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should contain the worldwide port name string to be used when
performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Logical unit number

CMDINPUT.4.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.4.DATA
Should contain the logical unit number string to be used when
performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Disk Partition Identifier

164 Application Programming Interfaces

CMDINPUT.5.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.5.DATA
Should contain the boot program selector value, which can be in the
range 0 - 30, inclusive.

Operating system specific load parameters

CMDINPUT.6.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.6.DATA
Should contain the operating system specific parameters string to be used
when performing the SCSI Dump. This string must be 256 characters or
less.

Boot record logical block address

CMDINPUT.7.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.7.DATA
Should contain the boot record logical block address string to be used
when performing the SCSI Dump. This string must consist of 16 or less
hexadecimal characters.

Force indicator

CMDINPUT.8.TYPE
Should be set to HWMCA_TYPE_INTEGER.

CMDINPUT.8.DATA
Should contain the value HWMCA_TRUE for the command to be
performed unconditionally or HWMCA_FALSE for the command to be
performed conditionally based on the state of the target object.

HWMCA_SHUTDOWN_RESTART_COMMAND
This command requires one argument, which is an indicator of the type of
shutdown or restart to be performed. This implies that the CMDINPUT.0 variable
should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_INTEGER and the CMDINPUT.1.DATA variable should contain
one of the following values.

HWMCA_RESTART_APPLICATION
Used to indicate the Console application is to be restarted.

HWMCA_RESTART _CONSOLE
Used to indicate the Console is to be restarted.

HWMCA_SHUTDOWN_CONSOLE
Used to indicate the Console is to be shutdown/powered off.

HWMCA_RESTART_APPLICATION_ALTERNATE
Used to indicate the Alternate Support Element Console application is to
be restarted. This option is only valid for the Support Element Console.

HWMCA_RESTART_CONSOLE_ALTERNATE
Used to indicate the Alternate Support Element Console is to be restarted.
This option is only valid for the Support Element Console.

Chapter 5. REXX management functions 165

HWMCA_SHUTDOWN_CONSOLE_ALTERNATE
Used to indicate the Alternate Support Element Console is to be
shutdown/powered off. This option is only valid for the Support Element
Console.

HWMCA_ACTIVATE_OOCOD_COMMAND
This command requires one argument, which is the order number of the On/Off
Capacity on Demand (On/Off CoD) record to be activated. This implies that the
CMDINPUT.0 variable should contain a 1. The CMDINPUT.1.TYPE variable
should be set to HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA
variable should contain the On/Off CoD order number to be activated.

HWMCA_UNDO_OOCOD_COMMAND
No arguments are accepted or required.

HWMCA_ADD_CAPACITY_COMMAND
This command requires one argument, which is an XML string describing the
parameters to be used for capacity addition. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA variable should
contain XML string for these parameters.

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed
description of this XML data.

HWMCA_REMOVE_CAPACITY_COMMAND
This command requires one argument, which is an XML string describing the
parameters to be used for capacity removal. This implies that the CMDINPUT.0
variable should contain a 1. The CMDINPUT.1.TYPE variable should be set to
HWMCA_TYPE_OCTETSTRING and the CMDINPUT.1.DATA variable should
contain XML string for these parameters.

Note: Refer to|Appendix F, “XML descriptions,” on page 219 for a detailed
description of this XML data.

HWMCA_SYSPLEX_TIME_SWAP_CTS_COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the current STP identifier for
the Defined CPC object.

HWMCA_SYSPLEX_TIME_SET_STP_CONFIG_COMMAND
This command requires the following arguments:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.1.DATA
Should contain a string representing the current STP identifier for
the Defined CPC object.

Force Indicator

CMDINPUT.2.TYPE
Should be set to HWMCA_TYPE_INTEGER.

166 Application Programming Interfaces

TIMEOUT

CMDINPUT.2.DATA
A pointer to a field containing the value HWMCA_TRUE for the
command to be performed unconditionally or HWMCA_FALSE
for the command to be performed conditionally based on the
state of the target object.

STP Configuration XML

CMDINPUT.3.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING.

CMDINPUT.3.DATA
Should be an XML fragment describing the configuration for the
STP-only CTN.

Note: Refer to [Appendix F, “XML descriptions,” on page 219 for a
detailed description of this XML data.

HWMCA_SYSPLEX_TIME_CHANGE_STP_ONLY_CTN_ COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the desired STP identifier for
the Defined CPC object and all CPCs that are members of the
same STP-only CTN

HWMCA_SYSPLEX_TIME_JOIN_STP_ONLY_CTN_ COMMAND
This command requires the following argument:

STP ID

CMDINPUT.1.TYPE
Should be set to HWMCA_TYPE_OCTETSTRING

CMDINPUT.1.DATA
Should contain a string representing the desired STP identifier for
the Defined CPC object.

HWMCA_SYSPLEX_TIME_LEAVE_STP_ONLY_CTN_ COMMAND
No arguments are accepted or required.

Used to specify the amount of time that the REXX application wants to wait for the
RxHwmcaCommand to complete. This value is specified in milliseconds and the variable
HWMCA_INFINITE_WAIT can be used to cause the application to wait forever.

Data exchange APIs (REXX sample)

This section shows an example REXX command file using the Console Data Exchange APIs and
Commands APIL. The most up to date copy of this code is available on Resource Link at
http:/fwww.ibm.com/servers/resourcelink. Click Services, and then Click APIL

Chapter 5. REXX management functions 167

/**/

/* Rexx command file used to illustrate the use of the Hardware */
/* Management Console APIs. This sample will allow the user to see */
/* the objects that can be managed from the Hardware Management */
/* Console, as well as perform tasks against these objects. */

/**/

trace 'o';

/**/
/* Number of seconds that this Rexx sample will wait for API calls =*/
/* to complete. This may need to be changed for remote networks */
/* that require more time to return the responses. */
/**/
api_timeout_secs = 30;

api_timeout = api_timeout_secs * 1000;

/**/
/* Parse the provided arguments. No arguments are required, since =*/
/* we will prompt the user for them. However, they can be passed */

/* as follows: */
/* Argument #1 - target HMC's hostname or internet address */
/* Argument #2 - target HMC's SNMP community name for API request*/
[k gk ke kk ok ke ok kok ok ok ok ok ok ok R R 2 2 R R R R R R T TR T e Kk kkkhh kK k *xkk [
parse arg INITBLK.TARGET INITBLK.COMMUNITY .;

'@echo off'

error = 0;
/**/
/* Load the 0S/2 Rexx Utility functions DLL. */
[F gk ke ok k ok kk ok ok ok ko k ok ok ok ok kR kK x I IR IR KRk kI I hh kKK Kk Kk kkkhh kK k *xkk [

if RxFuncQuery('SysLoadFuncs') then do
if rxfuncadd('SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs') then do
say 'Error trying to add 0S/2 Rexx utility functions.';

error = 98;
end /% Do */
end /* Do */
R R R Rt 2 R R Rt Kk kkkhk kK ok *xkk [
/* Load the Hwmca Rexx API interface function DLL. */

/**/

if RxFuncQuery('RxHwmcaloadFuncs') then do
if rxfuncadd('RxHwmcalLoadFuncs', 'ACTZSNMP', 'RxHwmcaloadFuncs') then do
say 'Error trying to add the Hardware Management Console API Rexx functions.';

error = 99;

end /* Do */

end /* Do */

if error == 0 then do
call SysLoadFuncs /* Load Rexx utility functions =*/
call RxHwmcaloadFuncs; /* Load HMC API functions */
call RxHwmcaDefineVars; /* Define HMC API variables */
/***/
/* Prompt the user for the HMC hostname or internet address. */

/***/
if INITBLK.TARGET = '' then do
say ' '3
say 'Please enter target Hardware Management Console hostname or internet address.';

168 Application Programming Interfaces

pull INITBLK.TARGET .;

end /* Do */
/***/
/* Prompt the user for the HMC community name to use. */
/***/
if INITBLK.COMMUNITY = '' then do

Say 1 I;

say 'Please enter community name for target Hardware Management Console.';
parse pull INITBLK.COMMUNITY .;

end /* Do */

/ """"" ER R R R R R R R R R R **/
/* This sample uses the same Initialization block, INITBLK, for =/
/* all RxHwmca API calls. */

/***/

INITBLK.EVENTMASK = HWMCA_EVENT_COMMAND_RESPONSE;

[Fk ke gk ok ok k ok ok ok ko k ok k ok kR FkEEF I IR *KhhF IR kI I h*h kK H % Kkkkkkkkkkk [
/* Initialize ourselves with the HMC and tell it that we are onlyx*/
/* interested in command response events. */

/***/

rc = RxHwmcalnitialize('INITBLK.',api_timeout);

if rc == HWMCA_DE_NO_ERROR then do
/**/
/* Get the size of the screen so we know how much room we */
/* have for outputting information. */
/**/
parse value SysTextScreenSize() with screen_rows screen_cols;
/**/
/* We are now successfully initialized with the HMC. First, =/

/* lets get the name of the HMC. */
[k ok ok ok ko ok ok ko ke k ok ok Tk kok ko ko ok ok ok ok ok ok ok ok A T */
call get_hmc_name;

nest = 0;

bailout = 0;

/**/
/* Now we need to request the list of groups and present this */
/* to the user. */
[Fkkdkk ok ke kk ok ok kok Kok kok ok ok ok ok kh kg rx I IR Rk hh ko xrhh kKK * ok Kk kkkhhh Kk */
if result <> ''then call show_contents HWMCA _CONSOLE ID 'Groups';
/**/
/* Terminate our session with the HMC, so that it does not */
/* try and send us any more events. */
/**/
rc = RxHwmcaTerminate('INITBLK.',api_timeout);
call SysCls;
end /* do */
else do
say 'Error' rc 'on RxHwmcalnitialize call.';
end /* do */
end /* Do */
exit

/**/

/* Subroutine: get_hmc_name */
/* */
/* This subroutine will request name attribute for the HMC. */
/************************************ """"""""""" ***********/

get_hmc_name:

hmc_name = get_name(HWMCA_CONSOLE_ID);
return hmc_name;

Chapter 5. REXX management functions 169

/**/

/* Subroutine: show_contents

/*

*/
*/

/* This subroutine will get the contents attribute for the passed */
/* in object and display the results to the user. Note that */
/* returned contents can be groups themselves or objects, such as */

/* CPCs or CPC Images.
/*

*/
*/

/* Note: We expose a lot of the HMC API variables that we defined =*/
/* earlier by calling the RxHwmcaDefineVars function. */

/**************** """""""

e s ook o e ok o ok o o ok o ok ok o ok ok FE———

show_contents: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,

HWMCA_NAME_SUFFIX hmc_name screen_cols,
HWMCA GROUP CONTENTS_ SUFFIX
HWMCA_CONSOLE_ID nest bailout,
HWMCA_OBJECT_TYPE_SUFFIX,
HWMCA_STATUS_SUFFIX,
HWMCA_STATUS_ERROR_SUFFIX,
HWMCA EXPECTED STATUS SUFFIX,
HWMCA ACTIVATION PROFILE SUFFIX,
HWMCA_LAST_ACT_PROFILE_SUFFIX
HWMCA_IP_ADDRESS_SUFFIX,
HWMCA_SNA_ADDRESS_SUFFIX,
HWMCA_MODEL_SUFFIX,
HWMCA_TYPE_SUFFIX,
HWMCA_MACHINE_SERIAL_SUFFIX,
HWMCA_CPC_SERIAL_SUFFIX,
HWMCA CPC ID_SUFFIX,

HWMCA 0PSYS NAME SUFFIX,
HWMCA_SYSPLEX_NAME_SUFFIX
HWMCA ACT_RESET LIST SUFFIX,
HWMCA_ACT_IMAGE_LIST_SUFFIX,
HWMCA ACT LOAD_ LIST SUFFIX
HWMCA ACT PROFILE IOCDS SUFFIX,
HWMCA ACT PROFILE IPLADDR SUFFIX,
HWMCA ACT PROFILE IPLPARM SUFFIX,
HNMCA_CPC_OBJECT

HWMCA _CPC_IMAGE_OBJECT,
HWMCA_CF_OBJECT,
HWMCA_INFINITE_WAIT,
HWMCA_TYPE_INTEGER,
HWMCA_TYPE_OCTETSTRING,
HWMCA_TRUE,

HWMCA_FALSE,
HWMCA_DE_TIMEOUT,
HWMCA_EVENT_COMMAND_RESPONSE,
HWMCA_ACTIVATE_COMMAND,

HWMCA DEACTIVATE COMMAND,
HWMCA SEND_OPSYS_COMMAND,
HWMCA_RESETNORMAL_COMMAND
HWMCA_RESETCLEAR_COMMAND,
HWMCA_START_COMMAND,
HWMCA_STOP_COMMAND,

HWMCA LOAD COMMAND,

HWMCA PSWRESTART COMMAND,
HWMCA_STATUS_OPERATING
HWMCA_STATUS_NOT_OPERATING,
HWMCA_STATUS_NO_POWER,
HWMCA_STATUS_NOT_ACTIVATED,
HWMCA_STATUS_EXCEPTIONS,
HWMCA_STATUS_STATUS_CHECK,
HWMCA STATUS SERVICE

HwMCA STATUS_LINKNOTACTIVE,
HWMCA_STATUS_POWERSAVE

170 Application Programming Interfaces

parse arg object_id view_name;
/**/
/* Setup the string equivalents for the status values that the HMC =*/
/* APIs will return. */
/**/
status. = 'Error getting the status attribute.';
status.HWMCA_STATUS_OPERATING = 'Operating';
status.HWMCA_STATUS_NOT_OPERATING = 'Not operating';
status.HWMCA_STATUS_NO_POWER = 'No power';
status.HWMCA_STATUS_NOT_ACTIVATED = 'Not activated';
status.HWMCA_STATUS_EXCEPTIONS = 'Exceptions';
status.HWMCA_STATUS_STATUS_CHECK = 'Status check';
status.HWMCA_STATUS_SERVICE = 'Service';
status.HWMCA_STATUS_LINKNOTACTIVE = 'Communications not active';
status.HWMCA_STATUS_POWERSAVE = 'Power save';
/**/
/* Setup the string equivalents for the status error values that */
/* the HMC APIs will return. */
/**/
status_error. = '';
status_error.HWMCA_TRUE = 'Contains object(s) in unacceptable states';
status_error.HWMCA_FALSE = 'A11 objects in acceptable states';
errmsg = '';
nest = nest + 1;
rc = HWMCA_DE_NO_ERROR;
/**/
/* Loop until the user selects RETURN or EXIT, or until an error */
/* occurred. We will refresh the data each time the Toop is taken. */
JEZZETITED o e e ok e ok ok ok ok o ko ok ok ko e e ek o ok ko ok o ok ko ko ek ke ke ok ko ke k */
do while rc == HWMCA _DE_NO ERROR & bailout ==

call SysCls;

/***/

/* Build the object identifier for the object contents. */

/***/

rc = RxHwmcaBuildAttributeId('ATTRID',object id,HWMCA GROUP_CONTENTS SUFFIX);

if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId('ATTRID',object id,HWMCA GROUP_CONTENTS SUFFIX);
end /* do x/
if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Get the object contents. */
/**/
rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
objects.id. = ''; objects.name. = '';
objects.type. = ''; objects.status = '';
objects.0 = 0;
cpes_found = 0;
/***/
/* Loop through all of the objects returned and get the */
/* name, type, and status or status error attributes. This */

/* is the information that we will present to the user. */
/***/
do i = 1 to words(OUTPUT.1.DATA) while rc == 0;

objects.0 = objects.0 + 1;
objects.id.i = word(OUTPUT.1.DATA,i);

/**/

/* Get the object's name attribute. */

/**/

Chapter 5. REXX management functions

171

objects.name.i = get _name(objects.id.i);

if objects.name.i == '' then do

say 'Error getting the object name attribute.';
end /* do */
/**/
/% Get the object's type attribute. */

/**/
objects.type.i = get type(objects.id.i);
select
when objects.type.i == "' then do
say 'Error getting the object type attribute.';
get_status = 0;
end /* do */
when objects.type.i == HWMCA_CPC_OBJECT then do
cpes_found = 1;
get_status = 1;
end /* Do x/
when objects.type.i == HWMCA_CF_OBJECT |,
objects.type.i == HWMCA_CPC_IMAGE_OBJECT then do
objects.name.i = translate(objects.name.i,':'," ');
get_status = 1;
end /* do */
otherwise get_status = 2;
end /* select =/
if get_status == 2 then do
/***/
/* Get the object's status error attribute. */
/***/
X = get_status_error(objects.id.i);
objects.status.i = status_error.x;
end /* Do x/
else do
if get_status == 1 then do
/**/
/* Get the object's status attribute. */
/**/
X = get_status(objects.id.i);
objects.status.i = status.x;

end /* Do %/
end /* Do x/
end /* do */

if rc == HWMCA_DE_NO_ERROR then do

/**/
/* Everything is still ok, so lets build the screen for */
/* the user.First, lets display the title and some text */

/* that tells the user what to do. */
/**/
say center(hmc_name||' - '||view_name||' Work Area',screen cols);

say 'Please type a number to select a target and press the specified';
say 'function key to perform the desired task.';

say;
/*Z;***/
/* Now lets display each object with its name and */
/* status values. */
/**/
do i =1 to objects.0 while rc == 0;
say right(i,3)||'. '||left(objects.name.i,17)||' - '||objects.status.i;
end /* do */
say;

172 Application Programming Interfaces

/**/

/* Let's determine which set of functions key */
/* definitions to use depending on whether or not we */
/* are looking at groups, CPCs, or CPC Images. */
/**/
profile. = '';

command. = '';

command.2 = 'REFRESH';

command.3 = "EXIT';

command.12 = '"RETURN';
if nest > 1 then do
/***/
/* We are Tooking at "real" objects, not just a list */
/* of group objects. The Activate and Deactivate */
/* tasks are valid for all types of "real" objects. =/
[ke kdk ek Kk ko Kk k FkEEF I KRR Khhh IR IR I **K* Kk K H % Kkkkkkkkkkk [
command.5 = HWMCA_ACTIVATE_COMMAND;
command.6 = HWMCA_DEACTIVATE_COMMAND;
command.7 = 'DETAILS';
if cpcs_found == 1 then do
/**/
/* It is a list of CPC objects, so the only tasks */
/* the user can do is Activate, Deactivate and */

/* Details. */
/**/

say 'Fl= F2=Refresh F3=Exit F4 = F5 =Activate F6=Deactivate';
say 'F7=Details F8=Reset Prof F9=Image Prof Fl0=Load Prof Fll= F12=Return';
command.8 = 'PROFILES';

command. 9 "PROFILES';
command.10 = 'PROFILES';
profile.8 = 'RESET';
profile.9 = 'IMAGE';
profile.10 = 'LOAD';
end /* Do */
else do
/**/
/* It is a 1ist of CPC Image and/or CF objects, =/
/* so let's allow the user to do almost anything. =*/
/**/
say 'Fl=Load F2=Refresh F3=Exit F4 =0pSys Cmd F5 =Activate F6 =Deactivate';
say 'F7=Details F8=Reset F9=Start F10=Stop F11=PSW Restart F12=Return';
command.l = HWMCA_LOAD_COMMAND;
command.4 = HWMCA_SEND_OPSYS_COMMAND;
command.8 = HWMCA_RESETNORMAL_COMMAND;
command.9 = HWMCA_START_COMMAND;
command.10 = HWMCA_STOP_COMMAND;
command.11 = HWMCA_PSWRESTART_COMMAND;

end /% Do */

end /* do */

else do
/**************************** """""""""""" */
/* We are looking at a list of groups, so we will */
/* only let the user open the group to see its */
/* contents. */

/***/

command.7 = 'OPEN'j;

say 'F1= F2=Refresh F3=Exit F4 = F5 = F6 =';
say '"F7=0pen F8= F9= F10= Fl1= F12=Return';
end /* do */

Chapter 5. REXX management functions 173

/**/
/* If there is an error message, then display it and x/
/* beep! x/
[F gk g kok ke k ok ok Kok ok ok ok ek ko ok ok ko ok ok ok o ok ok ok ok ok ok ok ok o ok FkkkkkkkKhkk [
say errmsg;

if errmsg <> '' then do

errmsg = '';

call beep 523,250;
end /% Do */
call charout , '====>"';
[F gk dkok ok ke k ok ok ok ok ok k ok ok xrhhhhhhhkkkkhkk kK Kk Kkkkkkkkhkk [
/* Allow the user to type a number(s) to select the */
/* target for the request and check for function keys =*/
/* to see what task to perform. */
/**/
fkey = ''; request = '';

do while fkey ==
key = SysGetKey('NOECHO');
keynum = c2d(key);
select
when keynum == 0 then do /* Function key */
key = SysGetKey('NOECHO');
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;
end /* Do */

when keynum == 13 then fkey = 2; /% Enter key */
when keynum == 27 then fkey = 3; /* Esc key x/

otherwise do
request = request||key;
call charout ,key;
end /* do */
end /* select */
end /* do */
/**/
/* One of the functions keys or Enter has been pressed =*/

/* by the user, so let figure out what to do. */
/**/
select
when command.fkey == 'REFRESH' then nop; /* Refresh =/
when command.fkey == 'EXIT' then do /* Exit */
bailout = 1;
leave;
end /x Do */

when command.fkey == 'RETURN' then Teave; /* Return =/
/***/
/* The user select to open the contents for a group. */
/* Check to make sure that they entered the number ofx*/
/* the group to open and then call show_contents to =/

/* display the contents of the group. */
[dkkdkdkkdk kK ok ke kKA sk ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok ok ok ok ok ok Kkkkkkkkkkk [
when command.fkey == 'OPEN' then do

if datatype(request) == 'NUM' then do

if request >= 1 & request <= objects.0 then do
call show_contents objects.id.request,
objects.name.request;
end /* Do */
else do
errmsg = 'Input number is out of range.';
end /* Do */
end /* Do */

174 Application Programming Interfaces

else do

errmsg = 'Input is not a valid number.';
end /% Do */
end /* Do */
/***/
/* The user select to display the details for an */

/* object. Check to make sure that they entered the =/
/* number of the object and then call show details =*/
/* to display the details for the object. */
/***/
when command.fkey == 'DETAILS' then do
if datatype(request) == 'NUM' then do
if request >= 1 & request <= objects.0 then do
call show_details objects.id.request,
objects.type.request,
objects.name.request,
objects.status.request,
"(*||view_name||')";
end /* Do */
else do
errmsg = 'Input number is out of range.';
end /* Do */
end /x Do */
else do
errmsg = 'Input is not a valid number.';
end /* Do *x/
end /* Do */
/***/
/* The user select to display a Tist of activation =/
/* profiles. Check to make sure that they entered =/
/* the number of the object and then call */
/* show_profiles to see the 1ist of profiles. */
/***/
when command.fkey == 'PROFILES' then do
if datatype(request) == 'NUM' then do
if request >= 1 & request <= objects.0 then do
if profile.fkey <> '' then do
call show profiles profile.fkey,
objects.id.request,
objects.type.request,
objects.name.request,
objects.status.request,
"("||view_name|]|')"';
end /* do */
else do
errmsg = 'Invalid profile type specified.';
end /* do */
end /* Do */
else do
errmsg = 'Input number is out of range.';
end /x Do */
end /* Do *x/
else do
errmsg = 'Input is not a valid number.';
end /* Do */
end /* Do */
/***/
/* Make sure the user pressed a defined function key.*/
/* If they did, then after making sure they entered =/
/* a valid number for the target object, call */

/* perform_command to execute the specified task. */
/***/

Chapter 5. REXX management functions

175

otherwise do
if command.fkey <> '' then do
if datatype(request) == 'NUM' then do
if request >= 1 & request <= objects.0 then do

call perform_command command.fkey,
objects.id.request,
objects.type.request,
objects.name.request;

errmsg = result;

end /* Do */
else do
errmsg = 'Input number is out of range.';
end /% Do */
end /* Do */
else do
errmsg = 'Input is not a valid number.';
end /* Do */
end /x Do */
else do
errmsg = 'Undefined function key pressed.';
end /x Do */
end /% Do */
end /* select */
end /* do */
end /* do =/
else do
say 'Error' rc 'on RxHwmcaGet for the object contents attribute.';
end /* do */
end /* do */
else do

say 'Error' rc 'on RxHwmcaBuildId for the object contents attribute.';
end /* do */
end /* do */
nest = nest - 1;

return rc;

[Fk K dkk ok kk ok kkk ok ok kk ko k ok ko kk ko k ko k ko k ok ko k ok ok kok ok kk ok kA ook ok ok ke ok ok *xkk [
/* Subroutine: show profiles */
/* */
/* This subroutine will request display a Tist of activation */
/% profiles for a CPC object. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */

/**/

show_profiles: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
hmc_name screen_cols bailout,
HWMCA_NAME_SUFFIX,
HWMCA_ACT_RESET_LIST_SUFFIX,
HWMCA_ACT_IMAGE_LIST_SUFFIX,
HWMCA_ACT_LOAD_LIST_SUFFIX,
HWMCA_ACT_PROFILE_IOCDS_SUFFIX,
HWMCA_ACT_PROFILE_IPLADDR_SUFFIX,
HWMCA_ACT_PROFILE_IPLPARM_SUFFIX,

parse arg proftype object id object type object name object status '(' group ')' .;

/**************** """"""""" dhhkkkhkhkhkrhhkhkhhkhhhhhrhhxk ***********/
/* Setup an array of the suffix values for the attributes that we */
/* need to get for the details display. Note that this array is */
/* different for CPCs and CPC Image/CF objects. */

/**/

176 Application Programming Interfaces

profiletype.=""

profiletype.l = 'Reset';

profiletype.2 = 'Image';

profiletype.3 = 'Load';

suffix.='";

suffix.0 = 3;

suffix.l = HWMCA_ACT_RESET_LIST_SUFFIX;

suffix.1.0 = 2;

suffix.1.1 = HWMCA_NAME_SUFFIX;

suffix.1.2 = HWMCA_ACT_PROFILE_IOCDS SUFFIX;

suffix.2 = HWMCA_ACT_IMAGE_LIST_SUFFIX;

suffix.2.0 = 3;

suffix.2.1 = HWMCA_NAME_SUFFIX;

suffix.2.2 = HNMCA ACT_ PROFILE IPLADDR_SUFFIX;

suffix.2.3 = HNMCA ACT PROFILE IPLPARM SUFFIX;

suffix.3 = HNMCA_ACT_LOAD_LIST_SUFFIX

suffix.3.0 = 3;

suffix.3.1 = HWMCA_NAME_SUFFIX;

suffix.3.2 = HNMCA ACT_ PROFILE IPLADDR_SUFFIX;

suff1x 3.3 = HNMCA ACT PROFILE IPLPARM SUFFIX;
= HWMCA_DE_NO ERROR;

/**/

/* Loo
/* occ
VEZTE2]
do whi
cal
lis
fie
sel

end
if

p until the user selects RETURN or EXIT, or until an error */
urred. We will refresh the data each time the Toop is taken. */

***/
le rc == HWMCA_DE_NO_ERROR & bailout ==

1 SysCls;

t.="'";

d. = '";

ect

when proftype == 'RESET' then i =1
when proftype == 'IMAGE' then i = 2
when proftype == 'LOAD' then i = 3;
otherwise i = 03

/* select */

i <> 0 then do

[Fkkdkk ok ke kk ok deokkk Kok k ok ok ok ok k ok h ok kxx I IR Rk hhhkkrhhh kKK k% Kk kkkhh kK ok *xkk [
/* Call get_attribute to get each of the attributes need for the */
/* profile 1ist display. */

/***/
/* do i =1 to suffix.0; =/
1ist.i = get_attribute(object_id suffix.i);
do j =1 to words(Tist.i);
profile_id = word(1ist.i,3);
do k = 1 to suffix.i.0
field.i.j.k = get_attribute(profile_id suffix.i.k);
end /* do */
end /* do */
/* end */ /* do */
/***/
/* Display the details title. */

/***/

say center(hmc_name||' - '||object name||' '||profiletype.i||' Profile List',screen cols);

/***/
/* Now build the lines of activation profile information that */
/* are to be displayed. x/
/***/
/* do i =1 to suffix.0; */
do j =1 to words(Tist.i);
select
when profiletype.i == 'Reset' then do

Chapter 5. REXX management functions

177

if field.i.j.2 == "' then field.i.j.2 = 'Use Active I0CDS';
say left(field.i.j.1,16)]],
' - 10CDS: '||field.i.j.2
end /* do */

when (profiletype.i == 'Image') | (profiletype.i == 'Load') then do
if field.i.j.2 == "' then field.i.j.2 = 'Dynamic';
else field.i.j.2 = right(field.i.j.2,4,'0")||" ';
if field.i.j.3 == "' then field.i.j.3 = 'Dynamic';

say left(field.i.j.1,16)
' - Load address: '|
' Load parameter: ['
end /* do */
otherwise nop;
end /* select */
end /* do */
/* end */ /* do */
/***/
/* Display the valid function keys...nothing much allowed here =/

B

field.i.j.2|
|field.i.j.3

['1"s

/* except for return/exit or refresh. */
/***/

say;

say 'Fl= F2=Refresh F3=Exit F4 = F5 = F6 =';

say 'F7= F8= F9= F10= Fll= F12=Return';
say;

command. = '';

command.2 = 'REFRESH';
command.3 = 'EXIT';
command.12 = 'RETURN';

call charout , '====>"';
[Fk gk dekk ok deok ok ok dok ok ok ok ok ok k kK xF I IR KhKhhhh kI hh* kKK Kk *kkxrhhhhh kAR **A /
/* Allow the user to press Enter or a function key. */
/***/
fkey = ''; request = '';

do while fkey == '

key = SysGetKey('NOECHO');

keynum = c2d(key);

select

when keynum == 0 then do /* Function key */

key = SysGetKey('NOECHO');
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;

end /* Do x/
when keynum == 13 then fkey = 2; /* Enter key */
when keynum == 27 then fkey = 3; /* Esc key */

otherwise do
request = request||key;
call charout ,key;
end /* do */
end /* select */
end /* do */
/***/
/* One of the functions keys or Enter has been pressed by the =/

/* user, so let figure out what to do. */
/***/
select
when command.fkey == 'REFRESH' then do /* Refresh =x/
nop;
end /* Do */
when command.fkey == 'EXIT' then do /* Exit */
bailout = 1;
leave;

178 Application Programming Interfaces

end /% Do */
when command.fkey == 'RETURN' then leave; /* Return =/
otherwise nop;
end /* select */
end /* do */
else do
leave;
end /* do */
end /* Do =/

return rc;

/**/

/* Subroutine: show_details */
/* */
/* This subroutine will request display the details for a CPC */
/* object, CPC Image object, or a CF object. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. */

/**/

show_details: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
hmc_name screen_cols bailout,
status.,
HWMCA_CPC_OBJECT,
HWMCA_CPC_IMAGE_OBJECT,
HWMCA_CF_OBJECT,
HWMCA_EXPECTED_STATUS_SUFFIX,
HWMCA_ACTIVATION_PROFILE_SUFFIX,
HWMCA_LAST_ACT_PROFILE_SUFFIX,
HWMCA_IP_ADDRESS_SUFFIX,
HWMCA_SNA_ADDRESS_SUFFIX,
HWMCA_STATUS_SUFFIX,
HWMCA_MODEL_SUFFIX,
HWMCA_TYPE_SUFFIX,
HWMCA_MACHINE_SERIAL_SUFFIX,
HWMCA_CPC_SERIAL_SUFFIX,
HWMCA_CPC_ID_SUFFIX,
HWMCA_OPSYS_NAME_SUFFIX,
HWMCA_SYSPLEX_NAME_SUFFIX,
HWMCA_STATUS_OPERATING,
HWMCA_STATUS_NOT_OPERATING,
HWMCA_STATUS_NO_POWER,
HWMCA_STATUS_NOT_ACTIVATED,
HWMCA_STATUS_EXCEPTIONS,
HWMCA_STATUS_STATUS_CHECK,
HWMCA_STATUS_SERVICE,
HWMCA_STATUS_LINKNOTACTIVE,
HWMCA_STATUS_POWERSAVE;

parse arg object_id object type object_name object_status '(' group ')’

/**/
/* Setup an array of the suffix values for the attributes that we =*/
/* need to get for the details display. Note that this array is */
/* different for CPCs and CPC Image/CF objects. */
/**/
suffix.="";

suffix.1 = HWMCA_EXPECTED STATUS_ SUFFIX;

suffix.2 = HWMCA_ACTIVATION_PROFILE_SUFFIX;

suffix.3 = HWMCA_LAST ACT_PROFILE_SUFFIX;

Chapter 5. REXX management functions

179

if object type == HWMCA_CPC_OBJECT then do
suffix.4 = HWMCA_IP_ADDRESS_SUFFIX;

suffix.5 = HWMCA_SNA ADDRESS SUFFIX;
suffix.6 = HWMCA_MODEL_SUFFIX;
suffix.7 = HWMCA_TYPE_SUFFIX;
suffix.8 = HWMCA_MACHINE_SERIAL_SUFFIX;
suffix.9 = HWMCA_CPC_SERIAL_SUFFIX;
suffix.10 = HWMCA_CPC_ID SUFFIX;
suffix.0 = 10;

end /* Do */

else do
suffix.4 = HWMCA_OPSYS NAME_SUFFIX;
suffix.5 = HWMCA_SYSPLEX_NAME_SUFFIX;
suffix.0 = 5;

end /* Do */

rc = HWMCA DE_NO_ERROR;
box_width = (screen cols-6);
/**/
/* Loop until the user selects RETURN or EXIT, or until an error */
/* occurred. We will refresh the data each time the Toop is taken. */
/**/
do while rc == HWMCA_DE_NO_ERROR & bailout ==
call SysCls;
field. = '';
/***/
/* Call get_attribute to get each of the attributes need for the */
/* details display. */
/***/
do i =1 to suffix.0
field.i = get_attribute(object_id suffix.i);
end /* do */
/***/
/* Display the details title. */
/***/
say center(hmc_name||' - '||object name||' Details',screen cols);
/***/
/* Display the instance information set of attributes, note that */
/* this set is different for CPCs and CPC Image/CF objects. */
/***/
say left(' —Instance information',screen_cols-3,'=')||'7 ';
if object_type == HWMCA CPC_OBJECT then do
say left(' | Status: 'left(object status,(box_width/2)-8)
' Activation profile: 'field.2,screen _cols-3)||'
say left(' | Group: 'left(group,(box width/2)-8)|],

|,

L
B

' Last used profile: 'field.3,screen cols-3)||'| ';
end /* Do */
else do
say left(' | Status: ' left(object status, (box width/2)-15)|],
' Activation profile: 'field.2,screen_cols-3)||'| ';
say left(' | Group: ' Teft(group, (box_width/2)-15)]|,
' Last used profile: 'field.3,screen_cols-3)||'

say left(' | SysPlex name:' left(field.5,(box_width/2)-15)]],
' Operating System: 'field.4,screen _cols-3)||'| ';
end /* Do */
say left(' L',screen cols-3,'=')|]|"{";
/***/

/* Display the acceptable status settings. Note the set of */
/* acceptable status values is different for CPCs and CPC Image »*/
/* or CF objects. */

/***/

180 Application Programming Interfaces

say left(' r—Acceptab]e status',screen_cols-3,'=')||'q ';

accstatus. = H

accstatus.0 = 9;

accstatus.l.value = x2b(right(d2x (HWMCA_STATUS_OPERATING),3,'0'));
accstatus.2.value = x2b(right(d2x(HNMCA_STATUS_NOT_OPERATING),3,'0'));
accstatus.3.value = x2b(right(d2x (HWMCA_STATUS_NO_POWER),3,'0'));
accstatus.4.value = x2b(right (d2x (HWMCA _ STATUS NOT_ACTIVATED),3,'0'));
accstatus.5.value = x2b(right(d2x (HWMCA_STATUS EXCEPTIONS) 3,'0'));
accstatus.6.value = x2b(r1ght(d2x(HNMCA_STATUS_STATUS_CHECK) 3,'0'));
accstatus.7.value = x2b(right(d2x (HWMCA STATUS_SERVICE),3,'0'));
accstatus.8.value = x2b(right(d2x (HWMCA_STATUS_LINKNOTACTIVE),3,'0'));
accstatus.9.value = x2b(r1ght(d2x(HNMCA STATUS_POWERSAVE),3,'0'));

field.1 = x2b(right(d2x(field.1),3,'0"));
do i =1 to accstatus.0
if (bitand(field.1l,accstatus.i.value) == accstatus.i.value) then do
accstatus.i.check = 'x';
end /* Do */
end /* do */
if object_type == HWMCA_CPC_OBJECT then do
say left(' | 'left(accstatus.l.check' Operating',box width/2)]|],
left(accstatus.9.check' Power save',box width/2),screen_cols-3)||"'|
say left(' | 'left(accstatus.2.check' Not operating',box_width/2) ||,
lTeft(accstatus.5.check! Exceptions',box_width/z),screen_co]s-3)||'
say left(' | 'left(accstatus.3.check' No power',box width/2)|],
left(accstatus.6.check' Status check',box w1dth/2) screen_cols-3)||'|

say left(" | "Teft (accstatus.8.check' Commun1cat1ons not active' ,box w1dth/2)||
Teft(accstatus.7.check' Service',box width/2),screen cols-3)||'|
end /* Do */
else do
say left(' | 'left(accstatus.l.check' Operating',box_width/2)|],
left(accstatus.9.check' Power save',box width/2),screen cols-3)||'| ';
say left(' | 'left(accstatus.4.check' Not activated',box width/2)|],

Teft(accstatus.5.check' Exceptions',box_width/2),screen cols-3)||"|
say left(' | 'left(accstatus.2.check' Not operating',box width/2)|],
left(accstatus.6.check' Status check',box_width/2),screen_cols-3)||"]
end /* Do */
say left(' L',screen cols-3,'-")|]|"";
/***/
/* If it is a CPC object, then show the product information set =/
/* of attributes. */
/*‘k‘k**‘k*‘k‘k‘k*‘k‘k*‘k‘k‘k*‘k‘k*‘k‘k**‘k‘k**‘k**‘k‘k**‘k*‘k**********‘k***************/
if object_type == HWMCA_CPC_OBJECT then do
say left(' —Product 1nf0rmation',screen_co]s-3,'—')||'1' '

type model = right(field.7,6,'0')||' - '[|field.6;
say left(' | Machine type - model: '1eft(type model, (box_width/2)-23) ||,
' SNA address: 'field.5,screen cols- 3)|| | '

ipaddr = field.4;

ip.4 = ipaddr // 256;

ipaddr = ipaddr % 256;

ip.3 = ipaddr // 256;

ipaddr = ipaddr % 256;

ip.2 = ipaddr // 256;

ipaddr = ipaddr % 256;

ip.l = ipaddr;

ipaddr = ip.1'."ip.2"'."ip.3"'."ip.4;

mach_serial = substr(field.8,4,2)||' - '||substr(field.8,6);

say left(' | Machine serial: "left(mach_serial, (box_width/2)-23)]]|,
' Internet address: 'ipaddr,screen cols-3)||'| '

mach_seq = right(substr(field.8,6),12,'0');

plant = substr(field.8,4,2);

say left(' | Machine sequence: "left(mach_seq, (box_width/2)-23)|],
' Plant of man.: 'plant,screen_cols-3) |||

4:
)|

Chapter 5. REXX management functions

181

cpc_id = right(field.10,2,'0');

say left(' | CPC serial: "left(field.9, (box_width/2)-23)|],
' CPC identifier: ‘'cpc_id,screen_cols-3)||'| ';
say left(' L'',screen cols-3,'=")]|'!";
end /* Do */

/***/
/* Display the valid function keys...nothing much allowed here =/

/* except for return/exit or refresh. */
/***/

say;

say 'F1= F2=Refresh F3=Exit F4 = F5 = F6 =';

say 'F7= F8= F9= F10= Fl1= F12=Return';
says;

command. = '';

command.2 = 'REFRESH';

command.3 = "EXIT';

command.12 = 'RETURN';

call charout , '====>"';

/***/

/* Allow the user to press Enter or a function key. */

/***/
)

fkey = ''; request = '';
do while fkey == "'
key = SysGetKey('NOECHO');
keynum = c2d(key);
select
when keynum == 0 then do /* Function key */
key = SysGetKey('NOECHO');
keynum = c2d(key);
if keynum >= 133 then fkey = keynum-122;
else fkey = keynum-58;
end /* Do */
when keynum == 13 then fkey
when keynum == 27 then fkey
otherwise do
request = request||key;
call charout ,key;
end /* do */
end /* select */
end /* do */
/***/
/* One of the functions keys or Enter has been pressed by the */
/% user, so let figure out what to do. x/
[F ek ke kkok ok kok ok k ok ok ke kok ok ke kok ok R ek e e o ek ok ek ko ok ok ok ek ko Kkkkkkkkkkk [
select
when command.fkey == 'REFRESH' then do /* Refresh =/
/***/
/* Refresh the object's status attribute value. */
/***/
X = get_status(object id);
object_status = status.x;
end /* Do */
when command.fkey == 'EXIT' then do /* Exit */
bailout = 1;
leave;
end /* Do */
when command.fkey == 'RETURN' then leave; /* Return */
otherwise nop;
end /* select =/
end /% Do */

2; /* Enter key */
3; /% Esc key */

return rc;

182 Application Programming Interfaces

/**/

/* Subroutine: get_name */
/* */
/* This subroutine will perform a Get request for the name attributex/
/* for the specified object. */

/**/

get_name: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
HWMCA_NAME_SUFFIX;

parse arg object_id .;

name = '';
/**/
/* Build the object identifier for the object name attribute. */

/**/
rc = RxHwmcaBuildAttributeld('ATTRID',object id,HWMCA NAME_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do
rc = RxHwmcaBuildId('ATTRID',object id,HWMCA NAME SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do
/***/
/* Get the object name attribute. */
/***/
rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
/**/
/* Remove any newline characters from the name. */
/**/
name = translate(OUTPUT.1.DATA,' ','0A'x);
end /* do */
else do
say 'Error' rc 'on RxHwmcaGet for name attribute.';
end /x do */
end /* do */
else do
say 'Error' rc 'on RxHwmcaBuildId for name attribute.';
end /* do */

return name;

/**/

/* Subroutine: get status */
/* */
/* This subroutine will perform a Get request for the status */
/* attribute for the specified object. */

/**/

get_status: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
HWMCA_STATUS_SUFFIX;

parse arg object_id .;

status = '';
[ek ke ko ek kK KhK I IR KKK KR KKK R T P */
/* Build the object identifier for the object status attribute. */

/**/
rc = RxHwmcaBuildAttributeId('ATTRID',object_id,HWMCA_STATUS_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do
rc = RwamcaBu11dId('ATTRID',object_id,HWMCA_STATUS_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do
/***/

/* Get the object status attribute. */

/***/

Chapter 5. REXX management functions

183

rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
status = OUTPUT.1.DATA;
end /* Do */
else do
say 'Error' rc 'on RxHwmcaGet for status attribute.';
end /* do */
end /* do */
else do
say 'Error' rc 'on RxHwmcaBuildId for status attribute.';
end /* do */

return status;

/**/

/* Subroutine: get_status_error */
/* */
/* This subroutine will perform a Get request for the status error =*/
/* attribute for the specified object. */

/**/

get_status_error: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
HWMCA_STATUS_ERROR_SUFFIX;

parse arg object_id .;

status_error = 5
/**/

/*Build the object identifier for the object status error attribute.*/
/**/
rc = RxHwmcaBuildAttributeId('ATTRID',object id,HWMCA STATUS ERROR SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RxHwmcaBuildId('ATTRID',object id,HWMCA STATUS ERROR SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/

/* Get the object status error attribute. */
/***/
rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
status_error = QUTPUT.1.DATA;
end /* Do */
else do
say 'Error' rc 'on RxHwmcaGet for status error attribute.';
end /* do =/
end /x do */
else do
say '"Error' rc 'on RxHwmcaBuildId for status error attribute.';
end /* do */

return status_error;

/**************** """"""""" ***********************************/
/* Subroutine: get type */
/* */
/* This subroutine will perform a Get request for the type attributex/
/* for the specified object. */

/**/

get_type: procedure expose api_timeout INITBLK. HWMCA DE NO_ERROR,
HWMCA_OBJECT_TYPE_SUFFIX;
parse arg object_id .;

type = '';

184 Application Programming Interfaces

/**/
/* Build the object identifier for the object type attribute. */
/**/
rc = RxHwmcaBuildAttributeId('ATTRID',object_id,HWMCA _OBJECT TYPE_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do
rc = RxHwmcaBuildId('ATTRID',object id,HWMCA_OBJECT_TYPE_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do
/***/
/* Get the object type attribute. */
/ """"" *khkkkkhkkhkkkhk **/
rc = RxHwmcaGet (' INITBLK.',ATTRID,0UTPUT. ,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
type = OUTPUT.1.DATA;
end /* do */
else do
say 'Error' rc 'on RxHwmcaGet for type attribute.';
end /x do */
end /* do */
else do
say 'Error' rc 'on RxHwmcaBuildId for type attribute.';
end /* do */

return type;

/**/

/* Subroutine: get profile */
/* */
/* This subroutine will perform a Get request for the activation */
/* profile attribute for the specified object. */

/**/

get_profile: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
HWMCA_ACTIVATION_PROFILE_SUFFIX;

parse arg object_id .;

profile = '';
JEZIETITEL ok kxx IR IRk hhhkkxhhh Kk kK k% ok kxx I IR Rk hhhkkrhhh kKK k% Kk kkkhh kK ok */
/* Build the object identifier for the object type attribute. */

/**/
rc = RxHwmcaBuildAttributeId('ATTRID',object_id,HWMCA_ACTIVATION_PROFILE_SUFFIX);
if rc <> HWMCA_DE_NO_ERROR then do

rc = RwamcaBui]dId('ATTRID',object_id,HWMCA_ACTIVATION_PROFILE_SUFFIX);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do

/***/

/* Get the activation profile attribute. */

/***/

rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)

if rc == HWMCA_DE_NO_ERROR then do

profile = OUTPUT.1.DATA;
end /x do */
else do
say '"Error' rc 'on RxHwmcaGet for activation profile attribute.';

end /* do */
end /* do */
else do

say 'Error' rc 'on RxHwmcaBuildId for activation profile attribute.';
end /* do */

return profile;

Chapter 5. REXX management functions

185

/**/

/* Subroutine: get_attribute */
/* */
/* This subroutine will perform a Get request for any attribute for */
/* the specified object. */

/**/

get_attribute: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR;
parse arg object id suffix .;

attr = '';
/**************** """"""""" KX KXKA A KA hhkhhhhhhhhhhhhhkhk*k ***********/
/* Build the object identifier for the object attribute. */

/**/
rc = RxHwmcaBuildAttributeId('ATTRID',object_id,suffix);
if rc <> HWMCA_DE_NO_ERROR then do
rc = RxHwmcaBuildId('ATTRID',object_id,suffix);
end /* do */
if rc == HWMCA_DE_NO_ERROR then do
/***/
/* Get the object attribute. */
/***/
rc = RxHwmcaGet ('INITBLK.',ATTRID,0UTPUT.,api_timeout)
if rc == HWMCA_DE_NO_ERROR then do
attr = OUTPUT.1.DATA;
end /* do */
else do
say 'Error' rc 'on RxHwmcaGet for object attribute.';
end /* do */
end /* do */
else do
say 'Error' rc 'on RxHwmcaBuildId for object attribute.';
end /* do */

return attr;

/**/

/* Subroutine: perform_command */
/* */
/* This subroutine will ask the user for confirmation and then */
/* perform the specified command. */
/* */
/* Note: We expose a lot of the HMC API variables that we defined */
/* earlier by calling the RxHwmcaDefineVars function. x/
[k gk dkok ek k ke k ok ke k ok ok ok ok ok ok ok ok kA Fkkrx I I IRk hhhhkkrhh kKK Kk Kkkkkkkkkkk [

perform_command: procedure expose api_timeout INITBLK. HWMCA_DE_NO_ERROR,
HWMCA_NAME_SUFFIX hmc_name screen_cols,
HWMCA_GROUP_CONTENTS_SUFFIX,
HWMCA_CONSOLE_ID nest bailout,
HWMCA_OBJECT_TYPE_SUFFIX,
HWMCA_ACTIVATION_PROFILE_SUFFIX,
HWMCA_CPC_OBJECT,
HWMCA_INFINITE_WAIT,
HWMCA_TYPE_INTEGER,
HWMCA_TYPE_OCTETSTRING,
HWMCA_TRUE,
HWMCA_FALSE,
HWMCA_DE_TIMEOUT,
HWMCA_EVENT_COMMAND_RESPONSE,
HWMCA_ACTIVATE_COMMAND,
HWMCA_DEACTIVATE_COMMAND,

186 Application Programming Interfaces

HWMCA_SEND_OPSYS_COMMAND,
HWMCA_RESETNORMAL_COMMAND,
HWMCA_RESETCLEAR_COMMAND,
HWMCA_START_COMMAND,
HWMCA_STOP_COMMAND,
HWMCA_LOAD_COMMAND,
HWMCA_PSWRESTART_COMMAND ;

parse arg command_id object_id object type object name;

return_msg = '';

CMDINPUT. = "';

CMDINPUT.O = 03

/**/
/* Determine the name of the command, so that we can use it when */

/* displaying information to the user. */
[kK gk ke kk ok kk ko k ok ok k ok ok dk ok ok ke k ok kA R R T T L koo ok ok ok ok ok */
select

when command_id = HWMCA_ACTIVATE_COMMAND then do
cmd_text = 'Activate';

end /* Do */

when command_id = HWMCA_DEACTIVATE_COMMAND then do
cmd_text = 'Deactivate';

end /* Do */

when command_id = HWMCA_SEND OPSYS_COMMAND then do
cmd_text = 'Operating System Command';

end /* Do */

when command_id = HWMCA_RESETNORMAL_COMMAND then do
cmd_text = 'Reset';

end /* Do */

when command_id = HWMCA_START_COMMAND then do
cmd_text = 'Start';

end /* Do */

when command_id = HWMCA_STOP_COMMAND then do
cmd_text = 'Stop';

end /* Do */

when command_id = HWMCA_PSWRESTART_COMMAND then do
cmd_text = 'PSW Restart';

end /* Do */

when command_id = HWMCA_LOAD_COMMAND then do
cmd_text = 'Load';

end /* Do */

otherwise do
cmd_text = '';
return_msg = 'Unknown command requested.';

end /* Do */

end /* select */
if cmd_text <> '' then do
/***/

/* We have a command that we understand, so now ask the user if =x/

/* they are sure that they want to do this. */
/ """"" *khkkkkhkkhkkkhk **/
call SysCls;

say center(hmc_name||' - '||cmd_text||' Confirmation',screen_cols);
say;

say 'Target:' object_name;

say;

say 'Are you sure you want perform the' cmd_text 'task?';
say "(Press 'Y' for Yes or 'N' for No)";

say;
call charout , '====>"';
key = SysGetKey('ECHO');
say;

if key == 'Y' | key == 'y' then do

Chapter 5. REXX management functions

187

/**/

/* The user said go ahead, so let's issue the command. */
/**/
select

/***/
/* First, let's get the activation profile associated with x/
/* the object, so we can ask the user if they want to use =/
/* that one or override it with another one. */
/***/
when command_id = HWMCA_ACTIVATE_COMMAND then do

profile = get_profile(object_id);

if profile <> '' then do

says;
say 'The activation profile currently associated with' object name 'is:' profile'.';
end /% Do */

say 'Please specify a new activation profile to be used or simply press Enter to';
say 'accept the default activation profile.';
call charout , '====>';
parse pull CMDINPUT.1.DATA .;
if CMDINPUT.1.DATA <> '' then do
CMDINPUT.1.TYPE = HWMCA_TYPE_OCTETSTRING;
CMDINPUT.O = 1;
end /* Do */
end /* Do */
/***/
/* Before issuing the request, we need to prompt the user =/
/* for the command text and whether or not the command */
/* should be a priority command. */
/***/

when command_id = HWMCA_SEND_OPSYS_COMMAND then do

say;
say 'Please enter the operating system command text.';
call charout , '====>"';

parse pull CMDINPUT.2.DATA

CMDINPUT.2.TYPE= HWMCA_TYPE_OCTETSTRING;

says;

say "Should this command be issued as a priority command?";
say "(Press 'Y' for Yes or 'N' for No)";

call charout , '=s===>"';
key = SysGetKey('ECHO');
says;

if key == "Y' | key == 'y' then CMDINPUT.1.DATA = HWMCA_TRUE;
else CMDINPUT.1.DATA = HWMCA FALSE;

CMDINPUT.1.TYPE= HWMCA_TYPE_INTEGER;

CMDINPUT.O = 2;

end /* Do */

when command_id = HWMCA_LOAD_COMMAND then do
say;
say 'Please enter the Load address to be used.';
call charout , '====>"';

parse pull CMDINPUT.1.DATA
CMDINPUT.1.TYPE= HWMCA_TYPE_OCTETSTRING;

says
say 'Please enter the Load parameter to be used.';
call charout , '====>"';

parse pull CMDINPUT.2.DATA

CMDINPUT.2.TYPE= HWMCA TYPE _OCTETSTRING;

say;

say "Should memory be cleared before performing the Load?";
say "(Press 'Y' for Yes or 'N' for No)";

188 Application Programming Interfaces

call charout , '====>"';

key = SysGetKey('ECHO');

say;

if key == 'Y' | key == 'y' then CMDINPUT.3.DATA = HWMCA_TRUE;
else CMDINPUT.3.DATA = HWMCA_FALSE;

CMDINPUT.3.TYPE= HWMCA_TYPE_INTEGER;

say;

say 'Please enter the timeout value to use when performing the Load.';
say "(Must be between 60 and 600 seconds.)";

call charout , '====>"';

parse pull CMDINPUT.4.DATA

CMDINPUT.4.TYPE= HWMCA_TYPE_INTEGER;

says;

say "Should status be stored before performing the Load?";
say "(Press 'Y' for Yes or 'N' for No)";

call charout , '====>"';

key = SysGetKey('ECHO');

say;

if key == 'Y' | key == 'y' then CMDINPUT.5.DATA = HWMCA TRUE;

else CMDINPUT.5.DATA = HWMCA_FALSE;
CMDINPUT.5.TYPE= HWMCA_TYPE_INTEGER;
CMDINPUT.O = 5;
end /* Do */
when command_id = HWMCA_RESETNORMAL COMMAND then do
say;
say "Should memory be cleared as a part of the Reset?";
say "(Press 'Y' for Yes or 'N' for No)";

call charout , '====>"';
key = SysGetKey('ECHO');
say;

if key == 'Y' | key == 'y' then command_id = HWMCA RESETCLEAR COMMAND;
end /* Do */
otherwise nop;

end /* select */
/**/

/* Now we are all set, so lets issue the command. */
[*Hxkdkhkkdkkk ko k ok ok k ok kk ok kK k R ook ok ok ok ok ok ok ok o ok ok ok ok ok ok Sekk ok Kk ok A */
say;

say 'Issuing the' cmd_text 'command request...';
rc = RxHwmcaCommand (' INITBLK.',object id,command_id,'CMDINPUT.',api_timeout);
if rc == HWMCA_DE_NO_ERROR then do

/***/
/* The request was successful, so now Tet's wait for the */

/* completion response. */
/***/
says;

call charout , 'Waiting for the' cmd_text 'task to complete.';
cmd_done = 03
do while cmd_done == 0 & rc == HWMCA_DE_NO_ERROR

rc = RxHwmcaWaitEvent ('INITBLK.','OUTPUT."',5000);

if rc == HWMCA_DE_NO_ERROR then do

/***/

/* Let's make sure that this event is a command */
/* response for the same command and target for our =/
/* request. */
/********************* """"""""""" ***********/

if OUTPUT.2.DATA == HWMCA_ EVENT_COMMAND_RESPONSE then do
/* It is a command response event */
if OUTPUT.1.DATA == object_id then do
/* It is a response for our target object =/

Chapter 5. REXX management functions

189

if OUTPUT.4.DATA == command_id then do
/* It is the command we issued */
cmd_done = 1;
if OUTPUT.6.DATA == HWMCA_DE_NO_ERROR then do
return_msg = cmd_text 'command completed successfully.';
end /* Do */
else do
return_msg = cmd_text 'command failed with rc' OUTPUT.6.DATA'.';
end /* Do */
end /x Do */
end /x Do =/
end /x Do */
end /* Do */
else do
if rc == HWMCA_DE_TIMEOUT then do
rc = HWMCA_DE_NO_ERROR;
call charout , '.';
end /* Do */
else do
return_msg = 'Error' rc 'on RxHwmcaWaitEvent call for' cmd_text 'command.';
end /* Do */
end /* Do */
end /* do */
end /* do */
else do
return_msg = 'Error' rc 'on RxHwmcaCommand call for' cmd_text 'command.';
end /* do */
end /* Do */
else do
return_msg = 'Command request cancelled.';
end /* Do */
end /x Do */

return return_msg;

190 Application Programming Interfaces

Chapter 6. Configuring for the data exchange APIs

Before the Console APIs (Data Exchange APIs and Commands API) can be used, some configuration
tasks must be performed on the Hardware Management Console or Support Element Console. These
configuration tasks fall into two categories:

¢ SNMP configuration
* Console API configuration.

Refer to the information about the following pages for detailed steps necessary to perform these two
types of configuration.

Note: Once these steps have been successfully completed, the Console APIs (Data Exchange APIs and
Commands API) can be used while the Hardware Management Console or Support Element Console is
up and running. The APIs will not be functional when the console is not running, even if these
configuration steps have been completed.

Note: For Consoles Version 2.9.0 or later the SNMP and Console API configuration tasks have been
merged into a single task named Customize API Settings.

Configuring for SNMP (for consoles earlier than version 2.9.0)

The Console uses the SNMP support provided by the SystemView® Agent for OS/2. Use the following
procedure to enable the SystemView Agent for OS/2. If you need more information, refer to SystemView
Agent for OS/2 User’s Guide .

To configure the SystemView Agent for OS/2:
1. Log on to the Console in Access Administrator mode.

2. Start the SNMP Configuration task, which can be found under Console Actions in the Views area of
the Console.

3. Add one or more entries in the Community Name Information box by selecting the Communities tab
of the SNMP Configuration notebook window. After specifying the following information, select the
Add push button to add a new community name or select the Change push button to change an
existing community name.

It is recommended that one entry be added for the Console itself and one additional entry for each
TCP/IP host (machine) that will be making Management API requests.

It is important that a valid entry be specified for the Console. This entry must match both the Console
TCP/IP address and community name (specified in step [5 on page 193). It must also specify the use
of the UDP protocol.

Protocol
Use this field to specify the communications protocol over which the community name is
valid. This must be set to UDP for the community name that is to be used by this Console.

The community name(s) that are to be used by applications using the Console APIs should
also be set to UDP.

Name This field should be filled in with any character string. Each community name in the list must
be unique. Please note that this field is case sensitive.

Note the community name that should be used by the Console, since it will need to be
specified in step

© Copyright IBM Corp. 2000, 2013 191

Note the community name(s) that are to be used by applications using the Console APIs, since
it will need to be specified on the Hwmcalnitialize calls issued by those applications.

Address
If you are following the recommendation of adding an entry for the Console and each
requesting application, then this field should be filled in with the TCP/IP address of the
machine that will be using the community name. If you are not following this
recommendation, then refer to the SystemView Agent for OS/2 documentation for further
details on this field.

Note: The Console’s TCP/IP address can be obtained by viewing the Network page of the
Hardware Management Console Settings or Support Element Settings task. This task is found
under Console Actions in the Views area and can only be performed by a user logged on to
the Console in Access Administrator mode.)

Network Mask
If you are following the recommendation of adding an entry for the Console itself and each
requesting application, then this field should be filled in with a character string of
255.255.255.255. If you are not following this recommendation, then refer to the SystemView
Agent for OS/2 documentation for further details on this field.

Access Type
Use this field to specify the type of access that is allowed for the community name.

The access type for the community name that is to be used by the Console can be either read
only or read/write.

The access type for the community name(s) that are to be used by applications using the
Console APIs MUST be read/write.

Update the MIB Variables by selecting the MIB Variables tab of the SNMP Configuration notebook
window. (This step is optional since the SystemView Agent for OS/2 provides default values for any
MIB Variable that is not specified.)

Description
Use this field to specify a meaningful name for this Console.

Contact
Use this field to specify the name of the contact person for this Console.

Name Use this field to specify the TCP/IP hostname of this Console.
Location
Use this field to specify the physical location of this Console.

Select the OK push button to save the changed settings and close the SNMP Configuration notebook
window.

If any of the above data was added or changed, you need to shut down and restart the Console
before the changes will be put into effect. However, before doing so, continue with the configuration
steps for the Console below.

Configuring the console for API (for consoles earlier than version
2.9.0)

The Console API configuration steps can be performed by using the API page of the Hardware
Management Console Settings or Support Element Settings task. This task is found under Console Actions in
the Views area.

To configure the Console for API support:

1.

Log on to the Console in Access Administrator mode.

2. Open the Hardware Management Console Settings or the Support Element Settings task.

192 Application Programming Interfaces

3. Select the API tab.

4. Check the Enable the Hardware Management Console Application Program Interface checkbox for
the Hardware Management Console Application or the Enable the Support Element Console
Application Program Interface checkbox for the Support Element.

5. Specify the community name to be used by the Console. Refer to step for more details
about the community name and how it is specified.

6. Specify any SNMP agent parameters that should be used when the Console automatically starts the
SystemView Agent for OS/2. Refer to the SystemView Agent for OS/2 User’s Guide for more information
regarding the SystemView Agent for OS/2 parameters.

Note: In order for the Console to be able to communicate with the SystemView Agent for OS/2, the
parameters -transport udp and -dpi tcp must be specified.

7. Specify any additional locations where enterprise-specific SNMP trap messages created by the Console
should be sent in the Event notification information box. Entries can be added, changed, and deleted
throughout with the use of the New, Change, and Delete push buttons respectively.

Adding entries to the Event notification information box will cause the Console to send the specified
event notifications to TCP/IP port 162 at the locations specified.

8. Select the Apply push button to save the changes.

9. If any of the above data was added or changed, then you need to stop and restart the Console before
the changes will be in effect. The Console can be stopped by logging off and then selecting the Cancel
push button on the logon window. The Hardware Management Console Application can be restarted
by starting the Hardware Management Console Application icon from the desktop, while the Support
Element Console can be restarted by rebooting the Support Element console.

Configuration problems

If there are configuration mistakes with either the SNMP configuration or the Console API configuration,
the Console APIs will not be functional. The nature of the configuration problem can be determined by
analyzing the Hardware Message that was created when the Console was started. The details of this
Hardware Message will list the exact configuration problem(s) that were found, along with corrective
actions.

Configuring the console for API (for consoles version 2.9.0 or later)

The Console API configuration steps can be performed by using the Customize API Settings task found in
the Hardware Management Console Settings or Support Element Settings group of tasks. This task is found
under Console Actions in the Views area.

To configure the Console for API support:

1. Log on to the Console in Access Administrator mode.

Open the Hardware Management Console Settings or the Support Element Settings group of tasks.
Open the Customize API Settings task.

Check the Enable SNMP APIs.

Specify any SNMP agent parameters desired. Note: No special SNMP agent parameters are required
for API to work correctly.

ok 0N

6. Add one or more entries in the Community Names box by selecting Add push button to add a new
community name or select the Change push button to change an existing community name. It is
recommended that one entry be added for each TCP/IP host (machine) that will be making
Management API requests.

Name This field should be filled in with any character string. Each community name in the list must
be unique. Note the community name(s) that are to be used by applications using the Console
APIs, since it will need to be specified on the Hwmcalnitialize calls issued by those
applications.

Chapter 6. Configuring for the data exchange APIs 193

Address
If you are following the recommendation of adding an entry for the Console and each
requesting application, then this field should be filled in with the TCP/IP address of the
machine that will be using the community name.

Note: This can be specified as an IPV6 address.

Network Mask/Prefix
If you are following the recommendation of adding an entry for the Console itself and each
requesting application, then this field should be filled in with a character string of
255.255.255.255. When using IPV6 addresses, the prefix for the address should be used,
instead of a masked value.

Access Type
Use this field to specify the type of access that is allowed for the community name. The access
type for the community name(s) that are to be used by applications using the Console APIs
MUST be read/write.

7. Specify any additional locations where enterprise-specific SNMP trap messages created by the Console
should be sent in the Event notification information box. Entries can be added, changed, and deleted
throughout with the use of the Add, Change, and Delete push buttons respectively. Adding entries to
the Event notification information box will cause the Console to send the specified event
notifications to TCP/IP port 162 at the locations specified. 8. Select the OK or Apply push buttons to
save the changes.

8. If any of the above data was added or changed, then you need to stop and restart the Console before
the changes will be in effect. The Console can be stopped by using the Shutdown or Restart task
found in the Console Actions view.

194 Application Programming Interfaces

Appendix A. Building an application

The following information should be helpful when trying to build an application that uses the Console
Application Programming Interfaces. All of the files necessary to build and run an API application are
preloaded on Hardware Management Consoles for versions earlier than Version 2.9.0.

The most up to date copies of these build and run-time files are now available on Resource Link at
http:/fwww.ibm.com/servers/resourcelink. Click on Services, and then Click API.

Hardware Management Console (prior to version 2.9.0)

The Console Application Programming Interfaces build and run-time files are preloaded on the Hardware
Management Console so applications executing on the Hardware Management Console can make direct
use of these interfaces once they are successfully built. The Data Exchange APIs and Commands API
(both the C language and Rexx interfaces) can be executed from an OS/2 workstation other than the
Hardware Management Console workstation. The files that need to be moved to the other workstation
for this are:

ACTZSAPILDLL
The OS/2 dynamic link library containing the C language Data Exchange APIs and Commands
APIL This file can be found in the D:\DYNALINK directory of the Hardware Management
Console.

ACTZSNMP.DLL
The OS/2 dynamic link library containing the Rexx language Data Exchange APIs and
Commands API. This file can be found in the D:\DYNALINK directory of the Hardware
Management Console.

The D:\TOOLKIT directory of the Hardware Management Console contains everything necessary to build
an application that uses the Hardware Management Console Application Programming Interfaces. The
items included in this directory are:

HWMCAAPLH
This C language include file contains all of the constant definitions, structure definitions, and
function prototypes for the HWMCA Management APIs.

HWMCAAPI.LIB
This library file contains all of the linkages needed in order to use the HWMCA Management
APIs.

Note: The OS/2 dynamic link library referenced by this library file can be found in the
D:\DYNALINK directory of the Hardware Management Console with the name ACTZSAPIL.DLL

HWMCATST.C
This C language source file is a copy of the example Management API application found in
lexchange APIs and commands API example” on page 62

HWMCATST.MAK
This OS/2 MAKE file can be used to build the example Management API application found in
[“Data exchange APIs and commands API example” on page 62.|

HWMCATST.EXE
This is an executable version of the Management API application found in [‘Data exchange APIY
land commands API example” on page 62]

© Copyright IBM Corp. 2000, 2013 195

HWMCARX.CMD
This Rexx command file is a copy of the example Rexx Management API application found in
[‘Data exchange APIs (REXX sample)” on page 167

HWMCAWIN.DLL
The 32-bit Windows dynamic link library containing the C language Data Exchange APIs and
Commands APL

HWMCAORX.DLL
The 32-bit Windows dynamic link library containing the Object Rexx language Data Exchange
APIs and Commands APL

HWMCAWIN.LIB
This library file contains all of the linkages needed in order to use the HWMCA Management
APIs on a 32-bit Windows platform.

HWMCAWIN.EXE
This is a 32-bit Windows executable version of the Management API application found in
lexchange APIs and commands API example” on page 62)

HWMCAV1.MIB
This is a SNMP version 1 based Management Information Base (MIB) that describes the entities
that can be managed by Management APlIs.

HWMCAV2.MIB
This is a SNMP version 2 based Management Information Base (MIB) that describes the entities
that can be managed by Management APIs.

HWMCAAIX.TAR
This file is an AIX® TAR file containing the following files:

hwmcaaix
AIX library file containing all of the linkages needed in order to use the HWMCA
Management APIs on an AIX platform.

libhwmcaaix.so
Shared Object Library containing the C/C++ language HWMCA Management APIs.

HWMCAMVS.TAR
This file is an z/OS® or OS/390° OpenEdition TAR file containing the following files:

hwmcamvs
This is an OpenEdition HFS executable version of the Management API application found
in [“Data exchange APIs and commands API example” on page 62|

hwmcaapi.x
z/0OS or OS/390 library file containing all the linkages needed in order to use the
HWMCA Management APIs on an z/OS or OS/390 platform.

hwmcaapi
z/0OS or OS/390 DLL containing the C/C++ language HWMCA Management APIs.

HWMCA386.TAR
This file is an Intel based Linux TAR file containing the following files:

hwmcalnx
This is an Intel Linux executable version of the Management API application found in
[“Data exchange APIs and commands API example” on page 62.|

libhwmcalnx.so
Link to ibhwmecalnx.so.0.

libhwmcalnx.s0.0
Link to libhwmcalnx.so.0.0.

196 Application Programming Interfaces

libhwmcalnx.s0.0.0
Intel Linux Shared Object Library containing the C/C++ language HWMCA Management
APIs.

The Hardware Management Console Application Programming Interface OS/2 dynamic link libraries are
built using the IBM VisualAge® C++ complier. These dynamic link libraries are written as 32- bit
interfaces and should be invoked accordingly.

When building an application that uses some of the Hardware Management Console Application
Programming Interfaces, make sure that the C language include files are located in a directory found in
the INCLUDE environment variable, and the interface library files are located in a directory found in the
LIB environment variable.

Appendix A. Building an application 197

198 Application Programming Interfaces

Appendix B. HWMCA_EVENT_COMMAND_RESPONSE return

codes

Following is a list of HWMCA_EVENT_COMMAND_RESPONSE return codes and their descriptions.
The return code values are shown as hexadecimal values with the decimal equivalent in parentheses.

0806000A (134610954) Resource unknown.

Explanation: The profile name specified in an
operations command is not recognized by the receiving
node.

Programmer response: Correct the configuration
identifier and re-send the request.

08090000 (134807552) Mode inconsistency: The
requested function cannot be performed
in the present state of the receiver.

Explanation: This command is prohibited because the
target is in an incompatible mode. For example, an
ITIMER request is not accepted when the system is
power-on reset in LPAR mode.

Programmer response: This function cannot be
performed in the present state of the receiver. Retry the
request after the target mode status has changed.

08090001 (134807553) Mode inconsistency: The
requested function cannot be performed
in the present state of the receiver.

Explanation: Acceptance of the command is
prohibited because the target is in an incompatible
mode. For example, an ITIMER request is not accepted
when the system is power-on reset in LPAR mode.

Programmer response: None. This function cannot be
performed in the present state of the receiver.

080AO000A (134873098) Permission rejected: The
receiver had denied an implicit or
explicit request of the sender.

Explanation: A STATLEV request was rejected because
it was not compatible with the status reporting values
set in the receiver.

Programmer response: Correct the STATLEV value
and re-send the request.

080C0005 (135004165) Procedure not supported: A
procedure specified is not supported in
the receiver.

Explanation: The command is not supported.

Programmer response: re-send the request using a
supported command, if possible.

© Copyright IBM Corp. 2000, 2013

080C0007 (135004167) Procedure not supported: A
procedure specified is not supported in
the receiver.

Explanation: A request for a function is supported by
the receiver, but the resource identified in the request
does not support that function.

Programmer response: None. This function cannot be
canceled.

08120000 (135397376) Insufficient resource: The
receiver cannot act on the request
because of a temporary lack of resource.

Explanation: System resources are temporarily busy.

Programmer response: re-send command if required.

08120011 (135397393) Insufficient resource: The
receiver cannot act on the request
because of a temporary lack of resource.

Explanation: Insufficient storage is available to the
target component to satisfy the request.

Programmer response: re-send command.

08150001 (135593985) Function active: A request to
activate an element or procedure was
received, but the element or procedure
was already active.

Explanation: Unable to perform the command because
the target CPC Subset or CPC Image is operational and
the force operand has not indicated the override
selection.

Programmer response: Put the system in the
appropriate state and re-send the command.

081A0000 (135921664) Request sequence error.

Explanation: Unable to perform the command because
the target partition is in the deactivated state.

Programmer response: Activate the logical partition,
then re-send the original request.

081A0009 (135921673) Request sequence error.

199

081A000A (135921674) « 08380000 (137887744)

Explanation: Unable to perform command because
power is not on.

Programmer response: Send a POWERON or
ACTIVATE command, then re-send the original request.

081AO000A (135921674) Request sequence error.

Explanation: Unable to perform command because
power-on reset is not complete.

Programmer response: Send a POWERON or
ACTIVATE command, then re-send the original request.

081A000B (135921675) Request sequence error.

Explanation: Unable to perform command because the
targeted CPU is not in the stopped state.

Programmer response: Send a STOP command, then
re-send the original request.

081A000E (135921678) Request sequence error.

Explanation: Unable to perform command because the
interval timer is present only when the CPC Image is
operating in S/370 mode.

Programmer response: None. The requested command
cannot be performed when the system is power-on
reset in either ESA /390 mode or LPAR mode.

081A0010 (135921680) Request sequence error.

Explanation: The request is rejected or failed because
the target resource is already in the state or condition
that the request would have provided.

Programmer response: None. The requested command
has already been performed.

081C0005 (136052741) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: A power-on request failed.

Programmer response: Verify that power is available
and re-send the command.

081C0006 (136052742) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: A POR(YES) or POR(IML) failed. This
may be accompanied by a hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

200 Application Programming Interfaces

081C0007 (136052743) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: An operating system load request (for
example, LOAD) failed.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

081CO000A (136052746) Request not executable: A
POWEROFF request cannot be
performed because of a permanent error
condition in the receiver.

Explanation: A power off request failed due to an
unexpected power status.

Programmer response: Reset any abnormal power
conditions at the receiver, such as tripped CBs, and
retry the power off command. Call for service if the
problem persists.

081CO00BA (136052922) Request not executable: The
requested function cannot be executed
because of a permanent error condition
in the receiver.

Explanation: The receiver has an error resulting from
a licensed internal code problem that prevents
execution of the request.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

082D0001 (137166849) Busy.

Explanation: Resources needed to process the request
are being used.

Programmer response: Wait for the resources to be
released, then re-send the request.

08380000 (137887744) Request not executable because
of resource or component state
incompatibility: The request is not
executable because it is not compatible
with the state of a resource or
component in the receiver.

Explanation: Unable to perform the command because
the system is in an invalid state.

Programmer response: Put the system in a state that
is compatible with the requested command and re-send
the request.

0838001B (137887771) * 100B0003 (269156355)

0838001B (137887771) Request not executable because
of resource or component state
incompatibility: The request is not
executable because it is not compatible
with the state of a resource or
component in the receiver.

Explanation: Request will not be honored because it
was submitted to a node at a time when a local
operator or other application reserved control of the
node.

Programmer response: Request the local operator to
release control (log off), or retry later.

08380037 (137887799) MYVS is not receiving. The
request is not executable because the
MVS operating system is not able to
respond because it is in an inactive or
quiesced state.

Explanation: Request will not be honored because it
requires that the resource operating system is in an
active state.

Programmer response: Reissue the command after the
operating system has been reactivated.

084F0000 (139395072) Resource not available: A
requested resource is not available to
service the given request.

Explanation: A resource error exits which may
indicate a configuration problem or insufficient
resource to execute the command.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085B0000 (140181504) Unknown resource name: The
identified resource required to complete
the requested command is not known.

Explanation: The profile name specified in the
AUTOACT operand of the RESET profile is not
recognized by the receiving node.

Programmer response: Correct the profile name and
re-send the request.

085C0000 (140247040) System exception. The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: An internal error has occurred with the
processing of this request. This may be accompanied by
a hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085C0001 (140247041) System exception: The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: The exception is identifiable as a
system-related problem. This may be accompanied by a
hardware alert.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

085C0002 (140247042) System exception: The node
experiences an exception condition
within a resident system or subsystem
that inhibits further processing by the
component.

Explanation: The exception is identified as a
permanent system-related problem. This may be
accompanied by a hardware alert.

Programmer response: If the code is returned for an
ACTIVATE request, to complete activation, send
another ACTIVATE request to complete the initial
program load.

For all other requests, retry the operation. Contact the
IBM Service Support System if the problem persists.

08B20002 (145883138) Data transmission failure: The
data transmission between an
application in the support element and
an application in the processor was
incomplete, causing abnormal
termination of the function.

Explanation: A time-out has occurred while waiting
for transmission of data between two applications.

Programmer response: Retry operation. Contact the
IBM Service Support System if the problem persists.

100B0001 (269156353) Required structure absent.

Explanation: An operand required by the command
was not found in the command string.

Programmer response: Enter the required operand
and re-send the request.

100B0003 (269156355) Multiple occurrences of a
nonrepeatable structure.

Explanation: A value that cannot be repeated was
detected in the command string.

Programmer response: Change the duplicate value(s)
to unique value(s) and re-send the request.

Appendix B. HWMCA_EVENT_COMMAND_RESPONSE return codes 201

100B0006 (269156358) » 80180002 (2149056514)

100B0006 (269156358) Length outside specified range.

Explanation: The length of the operand indicated in
SDATA is outside the allowable range.

Programmer response: Correct the operand data value
and re-send the request.

100B000B (269156363) Precluded combination of
structures and data values present.

Explanation: One command operand or data value is
in conflict with one or more other operands or data
values.

Programmer response: Remove the precluded
operand(s) or correct the command and re-send the
request. Also check the activation profile(s) used for
activation, as the error may be the result of incorrect
profile data.

100B000C (269156364) Unknown or unsupported data
value.

Explanation: The data value in the operand indicated
by SDATA is either unknown or unsupported.

Programmer response: Correct the operand data value
and re-send the request.

100B000D (269156365) Incompatible data values.

Explanation: The data value in the operand indicated
by SDATA is not compatible with this or other values.

Programmer response: Correct the conflicting operand
data value and re-send the request.

100B0012 (269156370) Recognized but unsupported
structure.

Explanation: The operand indicated by SDATA is
recognized but not supported by the target support
element.

Programmer response: Remove the unsupported
operand and re-send the request.

80180002 (2149056514) Resource unknown.

Explanation: The secondary OCR specified in the
OCENAME operand is not recognized.

Programmer response: Ensure that the system is
power-on reset in LPAR mode and the secondary name
in the OCFNAME operand matches a logical partition
name in the active IOCDS.

202 Application Programming Interfaces

Appendix C. API return codes

Data exchange API call return codes

Following is a list of return codes and their descriptions, which can be returned from the various Data
Exchange API calls. (The decimal values are shown in parentheses).

0) HWMCA_DE_NO_ERROR

Explanation: A Data Exchange API call has completed
successfully.

Programmer response: None.

1) HWMCA_DE_NO_SUCH_OBJECT

Explanation: A Data Exchange API call specified an
object identifier that does not exist.

Programmer response: Check the specified object

identifier to ensure that it is valid and that the API
support is enabled and functioning correctly on the
target console.

) HWMCA_DE_INVALID_DATA_TYPE

Explanation: A HwmcaSet Data Exchange API call
specified an invalid data type.

Programmer response: Check the specified data type
value to ensure that is one of the supported values and
that is appropriate for the target object identifier.

3) HWMCA_DE_INVALID_DATA _
LENGTH

Explanation: Either a HwmcaSet Data Exchange API
call specified a data length value that is not appropriate
for the corresponding data type or is not appropriate
for the target object identifier, or the result of a
HwmcaGet or HwmcaGetNext is too large to be
transported by the underlying transport protocol.

Programmer response: Either check to ensure that a
length of zero is used for a data type of
HWMCA_TYPE_NULL and that a length of 1, 2, or 4 is
used for a data type of HWMCA_TYPE_INTEGER, or
use an alternative approach for retrieving the desired
data.

@) HWMCA_DE_INVALID_DATA_PTR

Explanation: A HwmcaSet Data Exchange API call
specified a data pointer that is not appropriate for the
corresponding data type.

Programmer response: Check to ensure that a null
pointer is used for a data type of
HWMCA_TYPE_NULL and that a non-null pointer is

© Copyright IBM Corp. 2000, 2013

used for all other data types.

(5) HWMCA_DE_INVALID_DATA_VALUE

Explanation: A HwmcaSet Data Exchange API call
specified a data value that is not appropriate for the
target object identifier.

Programmer response: Check to make sure that the
data value is one of the allowed value for the target
object identifier.

6) HWMCA_DE_INVALID_INIT_PTR

Explanation: A Data Exchange API call specified null
as the pointer to the HWMCA_INITIALIZE_T
structure.

Programmer response: Make sure that this value is
specified as a pointer to a valid
HWMCA_INITIALIZE_T structure.

(7) HWMCA_DE_INVALID_ID_PTR

Explanation: A Data Exchange API call specified a
null pointer as the object identifier parameter.

Programmer response: Make sure that this value is
specified as a pointer to a valid object identifier string.

8) HWMCA_DE_INVALID_BUF_PTR

Explanation: A Data Exchange API call specified null
as the pointer to the output buffer.

Programmer response: Make sure that this value is
specified as a pointer to an address of the output
buffer.

9 HWMCA_DE_INVALID_BUF_SIZE

Explanation: A Data Exchange API call specified zero
as the length of the output buffer.

Programmer response: Make sure that this parameter
is a non-zero value.

(10) HWMCA_DE_INVALID_DATATYPE_
PTR

Explanation: A HwmcaSet Data Exchange API call
specified null as the pointer to the

203

(11) « (20)

HWMCA_DATATYPE_T structure used to describe the
data to be used for the set operation.

Programmer response: Make sure that this value is
specified as a pointer to an address of a valid
HWMCA_DATATYPE_T structure.

(11 HWMCA_DE_INVALID_TARGET

Explanation: A Hwmecalnitialize Data Exchange API
call specified an invalid host name or internet address
for the target console.

Programmer response: . Make sure that the value
pointed to by the pHost field of the
HWMCA_SNMP_TARGET_T structure is internet
address or hostname.

(12) HWMCA_DE_INVALID_EVENT_MASK

Explanation: A Hwmcalnitialize Data Exchange API
call specified a value in the ulEventMask field of the
HWMCA_INITIALIZE_T structure that is not valid.

Programmer response: Make sure that this field only
contains some combination of the valid event mask
values.

(13) HWMCA_DE_INVALID_PARAMETER

Explanation: A Data Exchange API call specified an
invalid parameter. Depending on the API call being
made, one of the following problems occurred:

Hwmcalnitialize

* The HWMCA_INITIALIZE_T structure used
on a previous Hwmecalnitialize call specifies
a host name or internet address specified
that is different that what was initially
specified.

* The ulReserved field of
HWMCA_INITIALIZE_T structure contains
a non-null value.

HwmcaBuildAttributeld
The pointer to the attribute suffix string was
specified as a null pointer.

HwmcaGet or HwmcaGetNext or HwmcaWaitEvent
The pointer to the value to be filled in with
the number of bytes needed for the output
buffer was specified as a null pointer.

(14) HWMCA_DE_READ_ONLY_OBJECT

Explanation: A HwmcaSet Data Exchange API call
specified a target object identifier that is read only.

Programmer response: . Make sure to use a target
object identifier that allows for write access.

204 Application Programming Interfaces

(15) HWMCA_DE_SNMP_INIT_ERROR

Explanation: A Hwmcalnitialize Data Exchange API
call encountered an error trying to create/allocate the
internal resources necessary to complete the operation.
For example, memory could not be allocated
successfully or TCP/IP sockets could not be created.

Programmer response: Make sure that the necessary
resources are available to be used on the requesting
machine.

(16) HWMCA_DE_INVALID_OBJECT_ID

Explanation: A Data Exchange API call was made
with an invalid object identifier.

Programmer response: Check the object identifier
specified on the call to make sure that it is specified
correctly and is a valid object identifier.

17 HWMCA_DE_REQUEST_ALLOC_
ERROR

Explanation: A Data Exchange API call encountered
an error trying to allocate some temporary storage for
internal use.

Programmer response: Make sure that enough
memory is available on the requesting machine.

(18) HWMCA_DE_REQUEST_SEND_
ERROR

Explanation: A Data Exchange API encountered an
error trying to send a request to the target console.

Programmer response: This is typically due to a
network error of some sort.

(19) HWMCA_DE_TIMEOUT

Explanation: A Data Exchange API timed out while
waiting for a response. For the HwmcaWaitEvent API
call, this simply means that no events were received
within the specified time period, so the calling
application should proceed accordingly. For other Data
Exchange API calls, the response was not received
within the specified time period.

Programmer response: Make sure that the timeout
value is large enough to allow for the request to be
completed and the response to be returned.

(20 HWMCA_DE_REQUEST_RECV_
ERROR

Explanation: A Data Exchange API encountered an
error trying to receive a response from the target
console. This is typically due to a network error of
some sort.

Programmer response: Investigate the possibility of a
network error.

(21 HWMCA_DE_SNMP_ERROR

Explanation: A Data Exchange API call received a
response that contained an unrecognized error status
value.

Programmer response: Make sure that no errors were
reported on the target console that would have resulted
in incomplete or invalid data to be sent as a response.

(22) HWMCA_DE_INVALID_TIMEOUT

Explanation: A Data Exchange API call was made
with the timeout value specified as zero.

Programmer response: Make sure that an appropriate
non-zero timeout value is specified on the API call.

(28) HWMCA_DE_INVALID_HOST

Explanation: A Hwmcalnitialize Data Exchange API
call was made with a null pointer value specified as the
pHost field of the HWMCA_SNMP_TARGET_T
structure.

Programmer response: Make sure this field points to a
valid hostname or internet address.

(29) HWMCA_DE_INVALID_COMMUNITY

Explanation: A Hwmcalnitialize Data Exchange API
call was made with a zero length string value specified
as the szCommunity field of the
HWMCA_SNMP_TARGET_T structure.

Programmer response: Make sure that this field
contains a community name string with a length
greater than zero.

(30) HWMCA_DE_INVALID_QUALIFIER

Explanation: A Hwmcalnitialize Data Exchange API
call was made that specified event qualification data,
but the ulType field of the
HWMCA_EVENT_QUALIFIER_T structure contained
an invalid value.

Programmer response: Make sure that this field
contains a valid event qualifier type value.

(98) HWMCA_DE_REQUIRES_QUALIFIER

Explanation: A Hwmcalnitialize Data Exchange API
call was made that specified an event mask indicating
that requires additional event qualification information
to be provided.

Programmer response: Make sure to provide the
necessary event qualification information.

(21) * (99)

(99) HWMCA_TRANSPORT_ERROR

Explanation: A Data Exchange API call was made but
an error was encountered in the transport layer that
was specified to deliver the request data and return the
response data.

Programmer response: Refer to information about the
specific transport layer being used for more details
regarding this error.

Appendix C. API return codes 205

0) » (17)

Command API call return codes

Following is a list of return codes and their descriptions, which can be returned from the various
Command API call. (The decimal values are shown in parentheses).

0) HWMCA_CMD_NO_ERROR

Explanation: A HwmcaCommand API call has
completed successfully.

Programmer response: None.

1) HWMCA_CMD_NO_SUCH_OBJECT

Explanation: A hwmcaCommand API call specified an
object identifier that does not exist.

Programmer response: Check the specified object

identifier to ensure that it is valid and that the API
support is enabled and functioning correctly on the
target console.

2) HWMCA_CMD_INVALID_DATA _
TYPE

Explanation: A HwmcaCommand API call specified
an invalid data type.

Programmer response: Check the specified data type
value to ensure that is one of the supported values and
that is appropriate for the target object identifier.

3) HWMCA_CMD_INVALID_DATA _
LENGTH

Explanation: A HwmcaCommand API call specified a
data length value that is not appropriate for the
corresponding data type or is not appropriate for the
target object identifier.

Programmer response: Check to ensure that a length
of zero is used for a data type of
HWMCA_TYPE_NULL and that a length of 1, 2, or 4 is
used for a data type of HWMCA_TYPE_INTEGER.

@) HWMCA_CMD_INVALID_DATA_ PTR

Explanation: A HwmcaCommand API call specified a
data pointer that is not appropriate for the
corresponding data type.

Programmer response: Check to ensure that a null
pointer is used for a data type of
HWMCA_TYPE_NULL and that a non-null pointer is
used for all other data types.

(5) HWMCA_CMD_INVALID_DATA _
VALUE

Explanation: A HwmcaCommand API call specified a
data value that is not appropriate for the target object
identifier.

206 Application Programming Interfaces

Programmer response: Check to make sure that the
data value is one of the allowed value for the target
object identifier.

(6) HWMCA_CMD_INVALID_INIT_ PTR

Explanation: A HwmcaCommand API call specified
null as the pointer to the HWMCA_INITIALIZE_T
structure.

Programmer response: Make sure that this value is
specified as a pointer to a valid
HWMCA_INITIALIZE_T structure.

7) HWMCA_CMD_INVALID_ID_PTR

Explanation: A HmcaCommand API call specified a
null pointer as the object identifier parameter.

Programmer response: Make sure that this value is
specified as a pointer to a valid object identifier string.

(10) HWMCA_CMD_INVALID_
DATATYPE_PTR

Explanation: A HwmcaCommand API call specified
null as the pointer to the HWMCA_DATATYPE_T
structure used to describe the data to be used for the
command parameter information.

Programmer response: Make sure that this value is
specified as a pointer to an address of a valid
HWMCA_DATATYPE_T structure.

(11) HWMCA_CMD_INVALID_TARGET

Explanation: A HwmcaCommand API call specified
an invalid target.

Programmer response: Check the specified object
identifier to ensure that it is valid and that there is not
already an active command for the specified object.

(13) HWMCA_CMD_INVALID_
PARAMETER

Explanation: A HwmcaCommand API call specified
an invalid parameter.

Programmer response: Make sure all the required
parameters are correctly specified.

17 HWMCA_CMD_REQUEST_ALLOC_
ERROR

Explanation: A HwmcaCommand PI call encountered
an error trying to allocate some temporary storage for
internal use.

Programmer response: Make sure that enough
memory is available on the requesting machine.

(18) HWMCA_CMD_REQUEST_SEND_
ERROR

Explanation: A HwmcaCommand API encountered an
error trying to send a request to the target console. This
is typically due to a network error of some sort.

Programmer response: Investigate the possibility of a
network error.

(19) HWMCA_CMD_TIMEOUT

Explanation: A HwmcaCommand API timed out
while waiting for a response. The response was not
received within the specified time period.

Programmer response: Make sure that the timeout
value is large enough to allow for the request to be
completed and the response to be returned.

(20) HWMCA_CMD_REQUEST_RECV_
ERROR

Explanation: A HwmcaCommand API encountered an
error trying to receive a response from the target
console. This is typically due to a network error of
some sort.

Programmer response: Investigate the possibility of a
network error.

(21) HWMCA_CMD_SNMP_ERROR

Explanation: A HwmcaCommand API call received a
response that contained an unrecognized error status
value.

Programmer response: Make sure that no errors were
reported on the target console that would have resulted
in incomplete or invalid data to be sent as a response.

(22) HWMCA_CMD_INVALID_TIMEOUT

Explanation: A HwmcaCommand API call was made
with the timeout value specified as zero.

Programmer response: Make sure that an appropriate
non-zero timeout value is specified on the API call.

(23) HWMCA_CMD_INVALID_CMD

Explanation: A HwmcaCommand API call was made
with an invalid command object identifier.

Programmer response: Make sure that the command
object identifier corresponds to a valid command for
the target object.

(18) « (27)

(24) HWMCA_CMD_OBJECT_BUSY

Explanation: A HwmcaCommand API call was made
specifying a target object identifier for an object that is
currently busy performing another command.

Programmer response: . Retry the call again after the
target object is no longer busy.

(25) HWMCA_CMD_INVALID_OBJECT

Explanation: A HwmcaCommand API call was made
with a target object identifier that is not valid for the
specified command.

Programmer response: Make sure that the command
object identifier corresponds to an appropriate
command for the target object.

(26) HWMCA_CMD_COMMAND_FAILED

Explanation: A HwmcaCommand API call failed due
to an internal error on the target console.

Programmer response: Check the target console for
details regarding the error.

(27) HWMCA_CMD_INITTERM_OK

Explanation: This is a value only used internally and
should never be received by the calling application.

Appendix C. API return codes 207

(26) -+ (40)

HWMCA_EVENT_COMMAND _ RESPONSE return codes

The following values are returned as HWMCA_EVENT_COMMAND_RESPONSE return codes for
HWMCA_ACTIVATE_CBU_COMMAND, HWMCA_UNDO_CBU_COMMAND,
HWMCA_ADD_CAPACITY_COMMAND, and HWMCA_REMOVE_CAPACITY_COMMAND command

requests.

(26) HWMCA_CMD_COMMAND_FAILED

Explanation: A command call failed due to an internal
error on the target console and a more specific failure
code was not provided by the command.

Programmer response: Check the target console for
details regarding the error.

(28) HWMCA_CMD_CBU_DISRUPTIVE_
OK

Explanation: The command request was successful but
requires a system IML for the changes to take effect.

Programmer response: Perform a system IML.

(29 HWMCA_CMD_CBU_PARTIAL_ HW

Explanation: The command request was successful for
the available hardware, but complete success for the
command request could not be achieved (probably due
to defective hardware).

(30) HWMCA_CMD_CBU_NO_SPARES

Explanation: The command request was unsuccessful
because the required hardware was not available.

(31) HWMCA_CMD_CBU_TEMPORARY

Explanation: The command request was successful,
but there was a problem updating the system
SEEPROM so the new capacity will be lost at the next
system IML.

(32) HWMCA_CMD_CBU_NOT_ ENABLED

Explanation: The command request failed because the
CBU feature is not enabled for the target console.

(33) HWMCA_CMD_CBU_NOT_
AUTHORIZED

Explanation: The command request failed because the
target console is not authorized for the requested
command.

(34) HWMCA_CMD_CBU_FAILED

Explanation: The command request failed due to an
internal error.

Programmer response: Check the target console for
details about the failure.

208 Application Programming Interfaces

(35 HWMCA_CMD_CBU_ALREADY_
ACTIVE

Explanation: The command request failed because
there is already a previous CBU request in effect.

(36) HWMCA_CMD_CBU_INPROGRESS

Explanation: The command request cannot be
performed at this time because another operation is
being performed at this time.

Programmer response: The command request can be
retried at a later time when the currently executing
operation is complete.

37) HWMCA_CMD_CBU_CPSAP_
SPLIT_CHG

Explanation: The command request cannot be
performed at this time because the current CP/SAP
allocation for the machine differs from what it was
originally.

Programmer response: The command request can be
retried at a later time after the CP/SAP split matches
the original values for the machine.

(38) HWMCA_CMD_INVALID_
MACHINE_STATE

Explanation: The command request cannot be
performed at this time because the target object is
currently not in an appropriate state (i.e. it is not
powered on).

Programmer response: The command request can be
retried at a later time when the target object is in an
appropriate state.

(39) HWMCA_CMD_NO_RECORDID

Explanation: The command request was unsuccessful
because the specified a capacity record with the
specified identifier does not exist.

Programmer response: The command request can be
retried at a later time with an identifier for an existing
capacity record.

40 HWMCA_CMD_NO_SW_ MODEL

Explanation: The command request was unsuccessful
because the specified software model is invalid for the
target object.

Programmer response: The command request can be
retried at a later time with a software model that is
valid for the target object.

41) HWMCA_CMD_NOT_ENOUGH_
RESOURCES

Explanation: The command request was unsuccessful
because the request specifies more resources than are
currently available on the target object.

Programmer response: The command request can be
retried at a later time with a number of resources that
are available on the target object.

42) HWMCA_CMD_NOT_ENOUGH_
ACTIVE_RESOURCES

Explanation: The command request was unsuccessful
because the request specifies more resources than are
currently active on the target object.

Programmer response: The command request can be
retried at a later time with a number of resources less
than or equal to those that are currently active on the
target object.

43) HWMCA_CMD_ACT_LESS_
RESOURCES

Explanation: The command request for additional
resources was unsuccessful because the request
specifies a net decrease in the resources for the target
object.

Programmer response: The command request can be
retried at a later time with an increase of resources for
the target object.

44) HWMCA_CMD_DEACT_MORE_
RESOURCES

Explanation: The command request for a removal of
resources was unsuccessful because the request
specifies a net increase in the resources for the target
object.

Programmer response: The command request can be
retried at a later time with a decrease of resources for
the target object.

45) HWMCA_CMD_ACT_TYPE_
MISMATCH

Explanat